Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrDya..
/
e616b..
PUezu..
/
db2de..
vout
PrDya..
/
562d3..
300.98 bars
TMZTv..
/
d9891..
ownership of
09af7..
as prop with payaddr
Pr5Zc..
rights free controlledby
Pr5Zc..
upto 0
TMHRf..
/
e06c7..
ownership of
4124a..
as prop with payaddr
Pr5Zc..
rights free controlledby
Pr5Zc..
upto 0
TMbQ8..
/
71993..
ownership of
a1a52..
as prop with payaddr
Pr5Zc..
rights free controlledby
Pr5Zc..
upto 0
TMQ5m..
/
f48eb..
ownership of
19a26..
as prop with payaddr
Pr5Zc..
rights free controlledby
Pr5Zc..
upto 0
PrBQv..
/
4ab45..
200.00 bars
PUUZ8..
/
b755b..
doc published by
Pr5Zc..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
omega
omega
:
ι
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Param
mul_nat
mul_nat
:
ι
→
ι
→
ι
Definition
b3e62..
equiv_nat_mod
:=
λ x0 x1 x2 .
and
(
and
(
and
(
x0
∈
omega
)
(
x1
∈
omega
)
)
(
x2
∈
omega
)
)
(
or
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
omega
)
(
add_nat
x0
(
mul_nat
x4
x2
)
=
x1
)
⟶
x3
)
⟶
x3
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
omega
)
(
add_nat
x1
(
mul_nat
x4
x2
)
=
x0
)
⟶
x3
)
⟶
x3
)
)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
divides_nat
divides_nat
:=
λ x0 x1 .
and
(
and
(
x0
∈
omega
)
(
x1
∈
omega
)
)
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
omega
)
(
mul_nat
x0
x3
=
x1
)
⟶
x2
)
⟶
x2
)
Definition
prime_nat
prime_nat
:=
λ x0 .
and
(
and
(
x0
∈
omega
)
(
1
∈
x0
)
)
(
∀ x1 .
x1
∈
omega
⟶
divides_nat
x1
x0
⟶
or
(
x1
=
1
)
(
x1
=
x0
)
)
Known
c14f2..
:
not
(
prime_nat
4
)
Param
nat_p
nat_p
:
ι
→
ο
Known
92637..
:
∀ x0 .
nat_p
x0
⟶
mul_nat
x0
x0
=
x0
⟶
or
(
x0
=
0
)
(
x0
=
1
)
Param
equip
equip
:
ι
→
ι
→
ο
Param
exp_nat
exp_nat
:
ι
→
ι
→
ι
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Known
17a87..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
equip
(
exp_nat
x0
x1
)
(
setexp
x0
x1
)
Param
SNo
SNo
:
ι
→
ο
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Known
24b4c..
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
mul_SNo
x0
(
mul_SNo
x1
(
mul_SNo
x2
x3
)
)
=
mul_SNo
x1
(
mul_SNo
x2
(
mul_SNo
x0
x3
)
)
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
minus_SNo
minus_SNo
:
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Param
ap
ap
:
ι
→
ι
→
ι
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Known
91770..
:
∀ x0 x1 x2 :
ι →
ι →
ι → ι
.
∀ x3 x4 x5 :
ι →
ι →
ι → ο
.
(
∀ x6 x7 x8 .
x3
x6
x7
x8
⟶
x0
x6
x7
x8
=
add_SNo
x6
(
mul_SNo
2
x8
)
)
⟶
(
∀ x6 x7 x8 .
x3
x6
x7
x8
⟶
x1
x6
x7
x8
=
x8
)
⟶
(
∀ x6 x7 x8 .
x3
x6
x7
x8
⟶
x2
x6
x7
x8
=
add_SNo
x7
(
minus_SNo
(
add_SNo
x6
x8
)
)
)
⟶
(
∀ x6 x7 x8 .
x4
x6
x7
x8
⟶
x0
x6
x7
x8
=
add_SNo
(
mul_SNo
2
x7
)
(
minus_SNo
x6
)
)
⟶
(
∀ x6 x7 x8 .
x4
x6
x7
x8
⟶
x1
x6
x7
x8
=
x7
)
⟶
(
∀ x6 x7 x8 .
x4
x6
x7
x8
⟶
x2
x6
x7
x8
=
add_SNo
x6
(
add_SNo
x8
(
minus_SNo
x7
)
)
)
⟶
(
∀ x6 x7 x8 .
x5
x6
x7
x8
⟶
x0
x6
x7
x8
=
add_SNo
x6
(
minus_SNo
(
mul_SNo
2
x7
)
)
)
⟶
(
∀ x6 x7 x8 .
x5
x6
x7
x8
⟶
x1
x6
x7
x8
=
add_SNo
x6
(
add_SNo
x8
(
minus_SNo
x7
)
)
)
⟶
(
∀ x6 x7 x8 .
x5
x6
x7
x8
⟶
x2
x6
x7
x8
=
x7
)
⟶
(
∀ x6 x7 x8 .
add_SNo
x6
x8
∈
x7
⟶
x3
x6
x7
x8
)
⟶
(
∀ x6 x7 x8 .
x3
x6
x7
x8
⟶
add_SNo
x6
x8
∈
x7
)
⟶
(
∀ x6 x7 x8 .
x7
∈
add_SNo
x6
x8
⟶
x6
∈
mul_SNo
2
x7
⟶
x4
x6
x7
x8
)
⟶
(
∀ x6 x7 x8 .
x4
x6
x7
x8
⟶
x7
∈
add_SNo
x6
x8
)
⟶
(
∀ x6 x7 x8 .
x4
x6
x7
x8
⟶
x6
∈
mul_SNo
2
x7
)
⟶
(
∀ x6 x7 x8 .
x7
∈
add_SNo
x6
x8
⟶
mul_SNo
2
x7
∈
x6
⟶
x5
x6
x7
x8
)
⟶
(
∀ x6 x7 x8 .
x5
x6
x7
x8
⟶
x7
∈
add_SNo
x6
x8
)
⟶
(
∀ x6 x7 x8 .
x5
x6
x7
x8
⟶
mul_SNo
2
x7
∈
x6
)
⟶
∀ x6 .
x6
∈
omega
⟶
∀ x7 .
equip
x7
x6
⟶
(
∀ x8 .
x8
∈
x7
⟶
lam
3
(
λ x10 .
If_i
(
x10
=
0
)
(
ap
x8
0
)
(
If_i
(
x10
=
1
)
(
ap
x8
1
)
(
ap
x8
2
)
)
)
=
x8
)
⟶
(
∀ x8 x9 x10 .
lam
3
(
λ x11 .
If_i
(
x11
=
0
)
x8
(
If_i
(
x11
=
1
)
x9
x10
)
)
∈
x7
⟶
∀ x11 : ο .
(
x8
∈
omega
⟶
x9
∈
omega
⟶
x10
∈
omega
⟶
SNoLt
0
x8
⟶
SNoLt
0
x9
⟶
SNoLt
0
x10
⟶
(
add_SNo
x8
x10
=
x9
⟶
∀ x12 : ο .
x12
)
⟶
(
x8
=
mul_SNo
2
x9
⟶
∀ x12 : ο .
x12
)
⟶
lam
3
(
λ x12 .
If_i
(
x12
=
0
)
x8
(
If_i
(
x12
=
1
)
x10
x9
)
)
∈
x7
⟶
x11
)
⟶
x11
)
⟶
(
∀ x8 x9 x10 x11 .
x11
∈
omega
⟶
∀ x12 .
x12
∈
omega
⟶
∀ x13 .
x13
∈
omega
⟶
lam
3
(
λ x14 .
If_i
(
x14
=
0
)
x8
(
If_i
(
x14
=
1
)
x9
x10
)
)
∈
x7
⟶
add_SNo
(
mul_SNo
x11
x11
)
(
mul_SNo
4
(
mul_SNo
x12
x13
)
)
=
add_SNo
(
mul_SNo
x8
x8
)
(
mul_SNo
4
(
mul_SNo
x9
x10
)
)
⟶
lam
3
(
λ x14 .
If_i
(
x14
=
0
)
x11
(
If_i
(
x14
=
1
)
x12
x13
)
)
∈
x7
)
⟶
∀ x8 x9 x10 .
lam
3
(
λ x11 .
If_i
(
x11
=
0
)
x8
(
If_i
(
x11
=
1
)
x9
x10
)
)
∈
x7
⟶
x0
x8
x9
x10
=
x8
⟶
x1
x8
x9
x10
=
x9
⟶
x2
x8
x9
x10
=
x10
⟶
(
∀ x11 x12 x13 .
lam
3
(
λ x14 .
If_i
(
x14
=
0
)
x11
(
If_i
(
x14
=
1
)
x12
x13
)
)
∈
x7
⟶
x0
x11
x12
x13
=
x11
⟶
x1
x11
x12
x13
=
x12
⟶
x2
x11
x12
x13
=
x13
⟶
and
(
and
(
x11
=
x8
)
(
x12
=
x9
)
)
(
x13
=
x10
)
)
⟶
∀ x11 : ο .
(
∀ x12 .
(
∀ x13 : ο .
(
∀ x14 .
lam
3
(
λ x15 .
If_i
(
x15
=
0
)
x12
(
If_i
(
x15
=
1
)
x14
x14
)
)
∈
x7
⟶
x13
)
⟶
x13
)
⟶
x11
)
⟶
x11
Known
c188a..
:
SNoLt
1
4
Param
ordinal
ordinal
:
ι
→
ο
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
finite
finite
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
equip
x0
x2
)
⟶
x1
)
⟶
x1
Known
Subq_finite
Subq_finite
:
∀ x0 .
finite
x0
⟶
∀ x1 .
x1
⊆
x0
⟶
finite
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
4f402..
exp_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
exp_nat
x0
x1
)
Known
nat_3
nat_3
:
nat_p
3
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Known
Pi_eta
Pi_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
lam
x0
(
ap
x2
)
=
x2
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Known
cases_3
cases_3
:
∀ x0 .
x0
∈
3
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
x0
Known
ordinal_In_Or_Subq
ordinal_In_Or_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
x0
∈
x1
)
(
x1
⊆
x0
)
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Known
SNoLeLt_tra
SNoLeLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
SNoLe_tra
SNoLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLe
x0
x2
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Known
mul_SNo_oneR
mul_SNo_oneR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
1
=
x0
Known
nonneg_mul_SNo_Le
nonneg_mul_SNo_Le
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNoLe
0
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x1
x2
⟶
SNoLe
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Known
ordinal_Subq_SNoLe
ordinal_Subq_SNoLe
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
x0
⊆
x1
⟶
SNoLe
x0
x1
Known
ordinal_Empty
ordinal_Empty
:
ordinal
0
Known
Subq_Empty
Subq_Empty
:
∀ x0 .
0
⊆
x0
Known
SNo_1
SNo_1
:
SNo
1
Known
mul_SNo_com
mul_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_SNo
x1
x0
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Known
add_SNo_Lt2
add_SNo_Lt2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x1
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
SNo_0
SNo_0
:
SNo
0
Known
SNoLt_tra
SNoLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
SNoLt_0_1
SNoLt_0_1
:
SNoLt
0
1
Known
SNoLtLe_tra
SNoLtLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLt
x0
x2
Known
48da5..
:
SNo
4
Known
nat_p_SNo
nat_p_SNo
:
∀ x0 .
nat_p
x0
⟶
SNo
x0
Known
nat_4
nat_4
:
nat_p
4
Known
pos_mul_SNo_Lt
pos_mul_SNo_Lt
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNoLt
0
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x1
x2
⟶
SNoLt
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Known
add_SNo_0L
add_SNo_0L
:
∀ x0 .
SNo
x0
⟶
add_SNo
0
x0
=
x0
Known
add_SNo_Lt1
add_SNo_Lt1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
Known
omega_SNo
omega_SNo
:
∀ x0 .
x0
∈
omega
⟶
SNo
x0
Known
nat_1
nat_1
:
nat_p
1
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
mul_nat_mul_SNo
mul_nat_mul_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_nat
x0
x1
=
mul_SNo
x0
x1
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
mul_SNo_zeroR
mul_SNo_zeroR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
0
=
0
Known
cases_1
cases_1
:
∀ x0 .
x0
∈
1
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
x0
Known
mul_SNo_zeroL
mul_SNo_zeroL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
0
x0
=
0
Known
neq_4_1
neq_4_1
:
4
=
1
⟶
∀ x0 : ο .
x0
Known
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Known
mul_SNo_In_omega
mul_SNo_In_omega
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
mul_SNo
x0
x1
∈
omega
Known
In_2_3
In_2_3
:
2
∈
3
Known
In_1_3
In_1_3
:
1
∈
3
Known
In_0_3
In_0_3
:
0
∈
3
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
In_no2cycle
In_no2cycle
:
∀ x0 x1 .
x0
∈
x1
⟶
x1
∈
x0
⟶
False
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
add_nat_add_SNo
add_nat_add_SNo
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_nat
x0
x1
=
add_SNo
x0
x1
Known
add_SNo_Le2
add_SNo_Le2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x1
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
ordinal_In_SNoLt
ordinal_In_SNoLt
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
SNoLt
x1
x0
Known
Pi_ext
Pi_ext
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
∀ x3 .
x3
∈
Pi
x0
x1
⟶
(
∀ x4 .
x4
∈
x0
⟶
ap
x2
x4
=
ap
x3
x4
)
⟶
x2
=
x3
Known
tuple_3_in_A_3
tuple_3_in_A_3
:
∀ x0 x1 x2 x3 .
x0
∈
x3
⟶
x1
∈
x3
⟶
x2
∈
x3
⟶
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
∈
setexp
x3
3
Known
tuple_3_0_eq
tuple_3_0_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
0
=
x0
Known
tuple_3_1_eq
tuple_3_1_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
1
=
x1
Known
tuple_3_2_eq
tuple_3_2_eq
:
∀ x0 x1 x2 .
ap
(
lam
3
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
x1
x2
)
)
)
2
=
x2
Known
ordinal_trichotomy_or_impred
ordinal_trichotomy_or_impred
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
∀ x2 : ο .
(
x0
∈
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
x1
∈
x0
⟶
x2
)
⟶
x2
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
SNo_2
SNo_2
:
SNo
2
Known
SNoLt_1_2
SNoLt_1_2
:
SNoLt
1
2
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
mul_SNo_oneL
mul_SNo_oneL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
1
x0
=
x0
Known
add_SNo_1_1_2
add_SNo_1_1_2
:
add_SNo
1
1
=
2
Known
add_SNo_minus_R2
add_SNo_minus_R2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
(
add_SNo
x0
x1
)
(
minus_SNo
x1
)
=
x0
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
add_SNo_minus_SNo_prop2
add_SNo_minus_SNo_prop2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
(
add_SNo
(
minus_SNo
x0
)
x1
)
=
x1
Known
c8949..
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
0
⟶
or
(
x0
=
0
)
(
x1
=
0
)
Known
add_SNo_cancel_L
add_SNo_cancel_L
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
x1
=
add_SNo
x0
x2
⟶
x1
=
x2
Known
neq_2_0
neq_2_0
:
2
=
0
⟶
∀ x0 : ο .
x0
Known
mul_SNo_nonzero_cancel
mul_SNo_nonzero_cancel_L
:
∀ x0 x1 x2 .
SNo
x0
⟶
(
x0
=
0
⟶
∀ x3 : ο .
x3
)
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
x1
=
mul_SNo
x0
x2
⟶
x1
=
x2
Known
neq_4_0
neq_4_0
:
4
=
0
⟶
∀ x0 : ο .
x0
Known
add_SNo_In_omega
add_SNo_In_omega
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_SNo
x0
x1
∈
omega
Known
mul_SNo_distrL
mul_SNo_distrL
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Known
mul_SNo_com_3_0_1
mul_SNo_com_3_0_1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
x1
(
mul_SNo
x0
x2
)
Known
d67ed..
:
∀ x0 .
SNo
x0
⟶
mul_SNo
2
x0
=
add_SNo
x0
x0
Known
add_SNo_minus_R2'
add_SNo_minus_R2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
(
add_SNo
x0
(
minus_SNo
x1
)
)
x1
=
x0
Known
nat_2
nat_2
:
nat_p
2
Known
mul_SNo_com_4_inner_mid
mul_SNo_com_4_inner_mid
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
mul_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x2
x3
)
=
mul_SNo
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x3
)
Known
ecc46..
:
mul_SNo
2
2
=
4
Known
ordinal_SNoLt_In
ordinal_SNoLt_In
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
SNoLt
x0
x1
⟶
x0
∈
x1
Known
nat_inv
nat_inv
:
∀ x0 .
nat_p
x0
⟶
or
(
x0
=
0
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
nat_p
x2
)
(
x0
=
ordsucc
x2
)
⟶
x1
)
⟶
x1
)
Known
ordinal_ordsucc
ordinal_ordsucc
:
∀ x0 .
ordinal
x0
⟶
ordinal
(
ordsucc
x0
)
Known
nat_0_in_ordsucc
nat_0_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
0
∈
ordsucc
x0
Known
In_1_2
In_1_2
:
1
∈
2
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
8b4bf..
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
(
add_SNo
x0
x1
)
(
add_SNo
x0
x1
)
=
add_SNo
(
mul_SNo
x0
x0
)
(
add_SNo
(
mul_SNo
2
(
mul_SNo
x0
x1
)
)
(
mul_SNo
x1
x1
)
)
Known
mul_SNo_distrR
mul_SNo_distrR
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
(
add_SNo
x0
x1
)
x2
=
add_SNo
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x2
)
Known
mul_SNo_assoc
mul_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
(
mul_SNo
x0
x1
)
x2
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Known
Sep_Subq
Sep_Subq
:
∀ x0 .
∀ x1 :
ι → ο
.
Sep
x0
x1
⊆
x0
Known
mul_nat_1R
mul_nat_1R
:
∀ x0 .
mul_nat
x0
1
=
x0
Theorem
a1a52..
:
∀ x0 .
x0
∈
omega
⟶
prime_nat
x0
⟶
b3e62..
x0
1
4
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
omega
)
(
x0
=
add_SNo
(
mul_SNo
x2
x2
)
(
mul_SNo
x4
x4
)
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
(proof)
Theorem
09af7..
:
∀ x0 .
x0
∈
omega
⟶
prime_nat
x0
⟶
b3e62..
x0
1
4
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
omega
)
(
x0
=
add_nat
(
mul_nat
x2
x2
)
(
mul_nat
x4
x4
)
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
(proof)