Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : (ι → ι → ι)ι → (((ι → ι) → ι) → ι)(ι → ι → ι) → ι . ∀ x1 : (((ι → ι)(ι → ι → ι) → ι)ι → ((ι → ι)ι → ι)(ι → ι) → ι)((ι → ι) → ι)(((ι → ι) → ι)ι → ι → ι) → ι . ∀ x2 : (ι → ι)(ι → ((ι → ι) → ι)ι → ι → ι) → ι . ∀ x3 : ((ι → ι → ι → ι → ι)ι → ι)(ι → ι)ι → ι . (∀ x4 . ∀ x5 : ι → ι . ∀ x6 . ∀ x7 : ι → ι . x3 (λ x9 : ι → ι → ι → ι → ι . λ x10 . Inj0 0) (λ x9 . x2 (λ x10 . x7 (x7 0)) (λ x10 . λ x11 : (ι → ι) → ι . λ x12 x13 . x3 (λ x14 : ι → ι → ι → ι → ι . λ x15 . setsum 0 (x3 (λ x16 : ι → ι → ι → ι → ι . λ x17 . 0) (λ x16 . 0) 0)) (λ x14 . 0) (x3 (λ x14 : ι → ι → ι → ι → ι . λ x15 . setsum 0 0) (λ x14 . x12) (x0 (λ x14 x15 . 0) 0 (λ x14 : (ι → ι) → ι . 0) (λ x14 x15 . 0))))) (x5 (x2 (λ x9 . x3 (λ x10 : ι → ι → ι → ι → ι . λ x11 . x7 0) (λ x10 . x1 (λ x11 : (ι → ι)(ι → ι → ι) → ι . λ x12 . λ x13 : (ι → ι)ι → ι . λ x14 : ι → ι . 0) (λ x11 : ι → ι . 0) (λ x11 : (ι → ι) → ι . λ x12 x13 . 0)) 0) (λ x9 . λ x10 : (ι → ι) → ι . λ x11 x12 . 0))) = x5 (x1 (λ x9 : (ι → ι)(ι → ι → ι) → ι . λ x10 . λ x11 : (ι → ι)ι → ι . λ x12 : ι → ι . setsum (x9 (λ x13 . x0 (λ x14 x15 . 0) 0 (λ x14 : (ι → ι) → ι . 0) (λ x14 x15 . 0)) (λ x13 x14 . 0)) (setsum 0 (x3 (λ x13 : ι → ι → ι → ι → ι . λ x14 . 0) (λ x13 . 0) 0))) (λ x9 : ι → ι . setsum x6 (x9 (x3 (λ x10 : ι → ι → ι → ι → ι . λ x11 . 0) (λ x10 . 0) 0))) (λ x9 : (ι → ι) → ι . λ x10 x11 . Inj0 x10)))(∀ x4 : ((ι → ι → ι)ι → ι → ι)((ι → ι)ι → ι) → ι . ∀ x5 . ∀ x6 : ((ι → ι → ι) → ι) → ι . ∀ x7 : ι → ι → (ι → ι) → ι . x3 (λ x9 : ι → ι → ι → ι → ι . λ x10 . x10) (λ x9 . x7 0 0 (λ x10 . 0)) (x7 (x1 (λ x9 : (ι → ι)(ι → ι → ι) → ι . λ x10 . λ x11 : (ι → ι)ι → ι . λ x12 : ι → ι . x2 (λ x13 . x2 (λ x14 . 0) (λ x14 . λ x15 : (ι → ι) → ι . λ x16 x17 . 0)) (λ x13 . λ x14 : (ι → ι) → ι . λ x15 x16 . x2 (λ x17 . 0) (λ x17 . λ x18 : (ι → ι) → ι . λ x19 x20 . 0))) (λ x9 : ι → ι . Inj0 (x7 0 0 (λ x10 . 0))) (λ x9 : (ι → ι) → ι . λ x10 x11 . x11)) 0 (λ x9 . x5)) = setsum 0 0)(∀ x4 : (((ι → ι)ι → ι) → ι) → ι . ∀ x5 : ι → ι → ι . ∀ x6 x7 : ι → ι . x2 (λ x9 . setsum x9 (x7 x9)) (λ x9 . λ x10 : (ι → ι) → ι . λ x11 x12 . 0) = x6 0)(∀ x4 : ι → ι . ∀ x5 : ((ι → ι → ι) → ι) → ι . ∀ x6 : ι → ι . ∀ x7 : (((ι → ι)ι → ι)ι → ι → ι) → ι . x2 (λ x9 . 0) (λ x9 . λ x10 : (ι → ι) → ι . λ x11 x12 . x0 (λ x13 x14 . Inj0 (Inj0 (x2 (λ x15 . 0) (λ x15 . λ x16 : (ι → ι) → ι . λ x17 x18 . 0)))) (x0 (λ x13 x14 . 0) x12 (λ x13 : (ι → ι) → ι . x12) (λ x13 x14 . Inj0 x12)) (λ x13 : (ι → ι) → ι . setsum (Inj0 x11) 0) (λ x13 x14 . Inj0 0)) = x0 (λ x9 . setsum (Inj1 (setsum (x6 0) (x2 (λ x10 . 0) (λ x10 . λ x11 : (ι → ι) → ι . λ x12 x13 . 0))))) (x2 (λ x9 . 0) (λ x9 . λ x10 : (ι → ι) → ι . λ x11 x12 . setsum (setsum x9 (x0 (λ x13 x14 . 0) 0 (λ x13 : (ι → ι) → ι . 0) (λ x13 x14 . 0))) (setsum (x10 (λ x13 . 0)) x12))) (λ x9 : (ι → ι) → ι . setsum (setsum (Inj1 (x6 0)) 0) (setsum (Inj0 (x7 (λ x10 : (ι → ι)ι → ι . λ x11 x12 . 0))) 0)) (λ x9 x10 . Inj1 (Inj0 (x1 (λ x11 : (ι → ι)(ι → ι → ι) → ι . λ x12 . λ x13 : (ι → ι)ι → ι . λ x14 : ι → ι . x3 (λ x15 : ι → ι → ι → ι → ι . λ x16 . 0) (λ x15 . 0) 0) (λ x11 : ι → ι . setsum 0 0) (λ x11 : (ι → ι) → ι . λ x12 x13 . x12)))))(∀ x4 x5 . ∀ x6 : ι → ι . ∀ x7 . x1 (λ x9 : (ι → ι)(ι → ι → ι) → ι . λ x10 . λ x11 : (ι → ι)ι → ι . λ x12 : ι → ι . 0) (λ x9 : ι → ι . x2 (λ x10 . x9 (x2 (λ x11 . x3 (λ x12 : ι → ι → ι → ι → ι . λ x13 . 0) (λ x12 . 0) 0) (λ x11 . λ x12 : (ι → ι) → ι . λ x13 x14 . setsum 0 0))) (λ x10 . λ x11 : (ι → ι) → ι . λ x12 x13 . x0 (λ x14 x15 . 0) 0 (λ x14 : (ι → ι) → ι . Inj0 (x2 (λ x15 . 0) (λ x15 . λ x16 : (ι → ι) → ι . λ x17 x18 . 0))) (λ x14 x15 . x13))) (λ x9 : (ι → ι) → ι . λ x10 x11 . 0) = x2 (λ x9 . Inj0 0) (λ x9 . λ x10 : (ι → ι) → ι . λ x11 x12 . x10 (λ x13 . 0)))(∀ x4 : (((ι → ι)ι → ι)(ι → ι) → ι)ι → ι . ∀ x5 x6 x7 . x1 (λ x9 : (ι → ι)(ι → ι → ι) → ι . λ x10 . λ x11 : (ι → ι)ι → ι . λ x12 : ι → ι . setsum 0 x10) (λ x9 : ι → ι . x7) (λ x9 : (ι → ι) → ι . λ x10 x11 . 0) = x7)(∀ x4 : ι → ι . ∀ x5 x6 x7 . x0 (λ x9 x10 . x3 (λ x11 : ι → ι → ι → ι → ι . λ x12 . x11 (Inj0 (x1 (λ x13 : (ι → ι)(ι → ι → ι) → ι . λ x14 . λ x15 : (ι → ι)ι → ι . λ x16 : ι → ι . 0) (λ x13 : ι → ι . 0) (λ x13 : (ι → ι) → ι . λ x14 x15 . 0))) x10 x9 (x2 (λ x13 . x0 (λ x14 x15 . 0) 0 (λ x14 : (ι → ι) → ι . 0) (λ x14 x15 . 0)) (λ x13 . λ x14 : (ι → ι) → ι . λ x15 x16 . 0))) (λ x11 . setsum (Inj0 0) 0) (x1 (λ x11 : (ι → ι)(ι → ι → ι) → ι . λ x12 . λ x13 : (ι → ι)ι → ι . λ x14 : ι → ι . 0) (λ x11 : ι → ι . x0 (λ x12 x13 . x11 0) 0 (λ x12 : (ι → ι) → ι . Inj0 0) (λ x12 x13 . x10)) (λ x11 : (ι → ι) → ι . λ x12 x13 . x13))) x7 (λ x9 : (ι → ι) → ι . Inj1 x7) (λ x9 x10 . x10) = x3 (λ x9 : ι → ι → ι → ι → ι . λ x10 . setsum (setsum 0 0) 0) (λ x9 . x0 (λ x10 x11 . x2 (λ x12 . x11) (λ x12 . λ x13 : (ι → ι) → ι . λ x14 x15 . 0)) 0 (λ x10 : (ι → ι) → ι . setsum (Inj1 0) 0) (λ x10 x11 . x0 (λ x12 x13 . x12) (x1 (λ x12 : (ι → ι)(ι → ι → ι) → ι . λ x13 . λ x14 : (ι → ι)ι → ι . λ x15 : ι → ι . 0) (λ x12 : ι → ι . 0) (λ x12 : (ι → ι) → ι . λ x13 x14 . x13)) (λ x12 : (ι → ι) → ι . setsum 0 x11) (λ x12 x13 . x13))) (Inj0 x7))(∀ x4 : ι → (ι → ι) → ι . ∀ x5 x6 x7 . x0 (λ x9 x10 . x1 (λ x11 : (ι → ι)(ι → ι → ι) → ι . λ x12 . λ x13 : (ι → ι)ι → ι . λ x14 : ι → ι . 0) (λ x11 : ι → ι . 0) (λ x11 : (ι → ι) → ι . λ x12 x13 . setsum (Inj1 (Inj0 0)) (x11 (λ x14 . x11 (λ x15 . 0))))) x5 (λ x9 : (ι → ι) → ι . 0) (λ x9 x10 . x6) = setsum x7 0)False
type
prop
theory
HF
name
-
proof
PURws..
Megalodon
-
proofgold address
TMHFW..
creator
11849 PrGVS../6446b..
owner
11889 PrGVS../75068..
term root
bc98d..