∀ x0 . ∀ x1 : ι → ι → ι . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 ∈ x0) ⟶ (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x1 x2 (x1 x3 x4) = x1 (x1 x2 x3) x4) ⟶ (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ x1 x2 x3 = x1 x3 x2) ⟶ ∀ x2 : ο . ((∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x1 x3 (x1 x4 x5) = x1 x4 (x1 x3 x5)) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ x1 x3 (x1 x4 x5) = x1 x5 (x1 x3 x4)) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x1 (x1 x3 x4) (x1 x5 x6) = x1 (x1 x3 x5) (x1 x4 x6)) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x1 x3 (x1 x4 (x1 x5 x6)) = x1 x6 (x1 x3 (x1 x4 x5))) ⟶ (∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ ∀ x5 . x5 ∈ x0 ⟶ ∀ x6 . x6 ∈ x0 ⟶ x1 x3 (x1 x4 (x1 x5 x6)) = x1 x5 (x1 x6 (x1 x3 x4))) ⟶ x2) ⟶ x2 |
|