Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . ((∀ x1 : ι → ο . ∀ x2 . (∀ x3 . x1 x3)wsb x1 x2)(∀ x1 : ι → ο . ∀ x2 . (∀ x3 . x1 x3)wsb x1 x2)wceq cbcc (cmpt2 (λ x1 x2 . cc) (λ x1 x2 . cn0) (λ x1 x2 . co (co (cv x1) (cv x2) cfallfac) (cfv (cv x2) cfa) cdiv))wceq cplusr (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . cmpt (λ x3 . cr) (λ x3 . co (cfv (cv x3) (cv x1)) (cfv (cv x3) (cv x2)) caddc)))wceq cminusr (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . cmpt (λ x3 . cr) (λ x3 . co (cfv (cv x3) (cv x1)) (cfv (cv x3) (cv x2)) cmin)))wceq ctimesr (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . cmpt (λ x3 . cr) (λ x3 . co (cv x1) (cfv (cv x3) (cv x2)) cmul)))(∀ x1 x2 : ι → ο . wceq (cptdfc x1 x2) (cmpt (λ x3 . cr) (λ x3 . cima (co (co (cv x3) (co x2 x1 cminusr) ctimesr) x1 cpv) (ctp c1 c2 c3))))wceq crr3c (co cr (ctp c1 c2 c3) cmap)wceq cline3 (crab (λ x1 . wa (wbr c2o (cv x1) cdom) (wral (λ x2 . wral (λ x3 . wne (cv x3) (cv x2)wceq (crn (cptdfc (cv x2) (cv x3))) (cv x1)) (λ x3 . cv x1)) (λ x2 . cv x1))) (λ x1 . cpw crr3c))(∀ x1 x2 : ο . wb (wvd1 x1 x2) (x1x2))(∀ x1 x2 x3 : ο . wb (wvd2 x1 x2 x3) (wa x1 x2x3))(∀ x1 x2 : ο . wb (wvhc2 x1 x2) (wa x1 x2))(∀ x1 x2 x3 : ο . wb (wvhc3 x1 x2 x3) (w3a x1 x2 x3))(∀ x1 x2 x3 x4 : ο . wb (wvd3 x1 x2 x3 x4) (w3a x1 x2 x3x4))wceq clsi (cmpt (λ x1 . cvv) (λ x1 . csup (crn (cmpt (λ x2 . cr) (λ x2 . cinf (cin (cima (cv x1) (co (cv x2) cpnf cico)) cxr) cxr clt))) cxr clt))wceq clsxlim (cfv (cfv cle cordt) clm)wceq csalg (cab (λ x1 . w3a (wcel c0 (cv x1)) (wral (λ x2 . wcel (cdif (cuni (cv x1)) (cv x2)) (cv x1)) (λ x2 . cv x1)) (wral (λ x2 . wbr (cv x2) com cdomwcel (cuni (cv x2)) (cv x1)) (λ x2 . cpw (cv x1)))))wceq csalon (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wceq (cuni (cv x2)) (cv x1)) (λ x2 . csalg)))x0)x0
type
prop
theory
SetMM
name
ax_frege58b__ax_frege58b_b__df_bcc__df_addr__df_subr__df_mulv__df_ptdf__df_rr3__df_line3__df_vd1__df_vd2__df_vhc2__df_vhc3__df_vd3__df_liminf__df_xlim__df_salg__df_salon
proof
PUV1k..
Megalodon
-
proofgold address
TMGeN..
creator
36224 PrCmT../47110..
owner
36224 PrCmT../47110..
term root
f4d31..