Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrKgQ../12007..
PUQSp../10f9d..
vout
PrKgQ../a2346.. 0.08 bars
TMXou../2546c.. ownership of 833b6.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMWnU../5065a.. ownership of 1603e.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMGCX../13bb6.. ownership of 7b79d.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMd9P../9b1e9.. ownership of b89e3.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMHfQ../9c252.. ownership of 0e563.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMQR2../639a3.. ownership of 2297b.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMRDj../4c13d.. ownership of 1051b.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMZJF../1be43.. ownership of 39316.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMaB8../17484.. ownership of ea037.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMNdg../e591c.. ownership of b6c62.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMbRR../e184a.. ownership of 7223a.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMHY4../0522d.. ownership of 368ed.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMPgF../884d9.. ownership of f6173.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMUiZ../85141.. ownership of 224b8.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMVvt../4ac2a.. ownership of e892d.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMZuK../a1ae9.. ownership of 2d528.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMUBw../35672.. ownership of 341a1.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMWK4../c9178.. ownership of 4f568.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMSLs../b57da.. ownership of 25c26.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMPNy../d0667.. ownership of 2f3ca.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMP86../40173.. ownership of e5b47.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMZLT../24af5.. ownership of b1a3c.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMLy4../7d014.. ownership of bd9cd.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMaqc../e335c.. ownership of 37cca.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMKcd../50aaf.. ownership of ad19c.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMaUy../b1202.. ownership of c6318.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMQWG../43a0f.. ownership of 596e3.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMKru../82378.. ownership of 361c4.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMTP7../ac1c5.. ownership of 2e08d.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMULR../93a9a.. ownership of a3e37.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMJDa../ea637.. ownership of fcaee.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMTUi../be327.. ownership of 9e7ee.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMSDw../bf875.. ownership of a53be.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMQPj../4e7a4.. ownership of a5858.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMQo9../78622.. ownership of 3d3ca.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMSdf../2cdd4.. ownership of 01368.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMWXs../23ebb.. ownership of 03706.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMSGH../5c3ce.. ownership of 418e3.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMamm../57232.. ownership of ae25c.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMYZ6../0dfe7.. ownership of ddd88.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
PUcag../b7125.. doc published by PrEBh..
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition MetaCat_equalizer_pequalizer_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 x9 . λ x10 : ι → ι → ι . and (and (and (and (and (and (and (x0 x4) (x0 x5)) (x1 x4 x5 x6)) (x1 x4 x5 x7)) (x0 x8)) (x1 x8 x4 x9)) (x3 x8 x4 x5 x6 x9 = x3 x8 x4 x5 x7 x9)) (∀ x11 . x0 x11∀ x12 . x1 x11 x4 x12x3 x11 x4 x5 x6 x12 = x3 x11 x4 x5 x7 x12and (and (x1 x11 x8 (x10 x11 x12)) (x3 x11 x8 x4 x9 (x10 x11 x12) = x12)) (∀ x13 . x1 x11 x8 x13x3 x11 x8 x4 x9 x13 = x12x13 = x10 x11 x12))
Definition MetaCat_equalizer_struct_pequalizer_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 : ι → ι → ι → ι → ι . λ x6 : ι → ι → ι → ι → ι → ι → ι . ∀ x7 x8 . x0 x7x0 x8∀ x9 x10 . x1 x7 x8 x9x1 x7 x8 x10MetaCat_equalizer_p x0 x1 x2 x3 x7 x8 x9 x10 (x4 x7 x8 x9 x10) (x5 x7 x8 x9 x10) (x6 x7 x8 x9 x10)
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Definition HomSetSetHom := λ x0 x1 x2 . x2setexp x1 x0
Param lamSigma : ι(ιι) → ι
Definition lam_idlam_id := λ x0 . lam x0 (λ x1 . x1)
Param apap : ιιι
Definition lam_complam_comp := λ x0 x1 x2 . lam x0 (λ x3 . ap x1 (ap x2 x3))
Param SepSep : ι(ιο) → ι
Known 41253..and8I : ∀ x0 x1 x2 x3 x4 x5 x6 x7 : ο . x0x1x2x3x4x5x6x7and (and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6) x7
Known Sep_SubqSep_Subq : ∀ x0 . ∀ x1 : ι → ο . Sep x0 x1x0
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x2x0
Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)lam x0 x1 = lam x0 x2
Known SepE2SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x1 x2
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Known Pi_etaPi_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1lam x0 (ap x2) = x2
Theorem ae25c..MetaCatSet_equalizer_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1∀ x2 . x2x1x0 x2)∀ x1 : ο . (∀ x2 : ι → ι → ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p x0 HomSet lam_id (λ x7 x8 x9 . lam_comp x7) x2 x4 x6x5)x5)x3)x3)x1)x1 (proof)
Param ZF_closedZF_closed : ιο
Param Union_closedUnion_closed : ιο
Definition Power_closedPower_closed := λ x0 . ∀ x1 . x1x0prim4 x1x0
Param Repl_closedRepl_closed : ιο
Known ZF_closed_EZF_closed_E : ∀ x0 . ZF_closed x0∀ x1 : ο . (Union_closed x0Power_closed x0Repl_closed x0x1)x1
Known UnivOf_ZF_closedUnivOf_ZF_closed : ∀ x0 . ZF_closed (prim6 x0)
Definition TransSetTransSet := λ x0 . ∀ x1 . x1x0x1x0
Known UnivOf_TransSetUnivOf_TransSet : ∀ x0 . TransSet (prim6 x0)
Known PowerIPowerI : ∀ x0 x1 . x1x0x1prim4 x0
Theorem 03706..MetaCatHFSet_equalizer_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1∀ x2 . x2x1x0 x2)∀ x1 : ο . (∀ x2 : ι → ι → ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p (λ x7 . x7prim6 0) HomSet lam_id (λ x7 x8 x9 . lam_comp x7) x2 x4 x6x5)x5)x3)x3)x1)x1 (proof)
Theorem 3d3ca..MetaCatSmallSet_equalizer_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1∀ x2 . x2x1x0 x2)∀ x1 : ο . (∀ x2 : ι → ι → ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p (λ x7 . x7prim6 (prim6 0)) HomSet lam_id (λ x7 x8 x9 . lam_comp x7) x2 x4 x6x5)x5)x3)x3)x1)x1 (proof)
Param MetaCatMetaCat : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Param setprodsetprod : ιιι
Param MetaCat_pullback_struct_ppullback_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Param MetaCat_product_constr_pproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Known ed2b0..product_equalizer_pullback_constr_ex : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . MetaCat x0 x1 x2 x3(∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p x0 x1 x2 x3 x5 x7 x9x8)x8)x6)x6)x4)x4)(∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p x0 x1 x2 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p x0 x1 x2 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4
Known 21e78..MetaCatSet_product_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1∀ x2 . x0 x2x0 (setprod x1 x2))∀ x1 : ο . (∀ x2 : ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι . (∀ x7 : ο . (∀ x8 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p x0 HomSet (λ x9 . lam x9 (λ x10 . x10)) (λ x9 x10 x11 x12 x13 . lam x9 (λ x14 . ap x12 (ap x13 x14))) x2 x4 x6 x8x7)x7)x5)x5)x3)x3)x1)x1
Theorem a53be..MetaCatSet_pullback_gen : ∀ x0 : ι → ο . MetaCat x0 HomSet lam_id (λ x1 x2 x3 . lam_comp x1)(∀ x1 . x0 x1∀ x2 . x2x1x0 x2)(∀ x1 . x0 x1∀ x2 . x0 x2x0 (setprod x1 x2))∀ x1 : ο . (∀ x2 : ι → ι → ι → ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι → ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι → ι → ι → ι . (∀ x7 : ο . (∀ x8 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p x0 HomSet lam_id (λ x9 x10 x11 . lam_comp x9) x2 x4 x6 x8x7)x7)x5)x5)x3)x3)x1)x1 (proof)
Definition TrueTrue := ∀ x0 : ο . x0x0
Known e4125..MetaCatSet : MetaCat (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0)
Known TrueITrueI : True
Theorem fcaee..MetaCatSet_pullback : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Known 2fb6a..MetaCatHFSet : MetaCat (λ x0 . x0prim6 0) HomSet lam_id (λ x0 x1 x2 . lam_comp x0)
Known ecfb5..ZF_setprod_closed : ∀ x0 . TransSet x0ZF_closed x0∀ x1 . x1x0∀ x2 . x2x0setprod x1 x2x0
Theorem 2e08d..MetaCatHFSet_pullback : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p (λ x8 . x8prim6 0) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Known 68978..MetaCatSmallSet : MetaCat (λ x0 . x0prim6 (prim6 0)) HomSet lam_id (λ x0 x1 x2 . lam_comp x0)
Theorem 596e3..MetaCatSmallSet_pullback : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p (λ x8 . x8prim6 (prim6 0)) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Param ordsuccordsucc : ιι
Definition MetaCat_terminal_pterminal_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . and (x0 x4) (∀ x6 . x0 x6and (x1 x6 x4 (x5 x6)) (∀ x7 . x1 x6 x4 x7x7 = x5 x6))
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known In_0_1In_0_1 : 01
Param SingSing : ιι
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known eq_1_Sing0eq_1_Sing0 : 1 = Sing 0
Theorem ad19c.. : ∀ x0 : ι → ο . x0 1MetaCat_terminal_p x0 HomSet (λ x1 . lam x1 (λ x2 . x2)) (λ x1 x2 x3 x4 x5 . lam x1 (λ x6 . ap x4 (ap x5 x6))) 1 (λ x1 . lam x1 (λ x2 . 0)) (proof)
Definition MetaCat_monic_pmonic := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 . and (and (and (x0 x4) (x0 x5)) (x1 x4 x5 x6)) (∀ x7 . x0 x7∀ x8 x9 . x1 x7 x4 x8x1 x7 x4 x9x3 x7 x4 x5 x6 x8 = x3 x7 x4 x5 x6 x9x8 = x9)
Definition MetaCat_pullback_ppullback_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 x9 x10 x11 . λ x12 : ι → ι → ι → ι . and (and (and (and (and (and (and (and (and (x0 x4) (x0 x5)) (x0 x6)) (x1 x4 x6 x7)) (x1 x5 x6 x8)) (x0 x9)) (x1 x9 x4 x10)) (x1 x9 x5 x11)) (x3 x9 x4 x6 x7 x10 = x3 x9 x5 x6 x8 x11)) (∀ x13 . x0 x13∀ x14 . x1 x13 x4 x14∀ x15 . x1 x13 x5 x15x3 x13 x4 x6 x7 x14 = x3 x13 x5 x6 x8 x15and (and (and (x1 x13 x9 (x12 x13 x14 x15)) (x3 x13 x9 x4 x10 (x12 x13 x14 x15) = x14)) (x3 x13 x9 x5 x11 (x12 x13 x14 x15) = x15)) (∀ x16 . x1 x13 x9 x16x3 x13 x9 x4 x10 x16 = x14x3 x13 x9 x5 x11 x16 = x15x16 = x12 x13 x14 x15))
Definition MetaCat_subobject_classifier_psubobject_classifier_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . λ x6 x7 . λ x8 : ι → ι → ι → ι . λ x9 : ι → ι → ι → ι → ι → ι → ι . and (and (and (MetaCat_terminal_p x0 x1 x2 x3 x4 x5) (x0 x6)) (x1 x4 x6 x7)) (∀ x10 x11 x12 . MetaCat_monic_p x0 x1 x2 x3 x10 x11 x12and (x1 x11 x6 (x8 x10 x11 x12)) (MetaCat_pullback_p x0 x1 x2 x3 x4 x11 x6 x7 (x8 x10 x11 x12) x10 (x5 x10) x12 (x9 x10 x11 x12)))
Param If_iIf_i : οιιι
Param invinv : ι(ιι) → ιι
Known and4Iand4I : ∀ x0 x1 x2 x3 : ο . x0x1x2x3and (and (and x0 x1) x2) x3
Known In_1_2In_1_2 : 12
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known If_i_orIf_i_or : ∀ x0 : ο . ∀ x1 x2 . or (If_i x0 x1 x2 = x1) (If_i x0 x1 x2 = x2)
Known In_0_2In_0_2 : 02
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known 19e22..and10I : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 : ο . x0x1x2x3x4x5x6x7x8x9and (and (and (and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6) x7) x8) x9
Known inj_linvinj_linv : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 = x1 x3x2 = x3)∀ x2 . x2x0inv x0 x1 (x1 x2) = x2
Known cases_1cases_1 : ∀ x0 . x01∀ x1 : ι → ο . x1 0x1 x0
Known neq_0_1neq_0_1 : 0 = 1∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Known If_i_correctIf_i_correct : ∀ x0 : ο . ∀ x1 x2 . or (and x0 (If_i x0 x1 x2 = x1)) (and (not x0) (If_i x0 x1 x2 = x2))
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Theorem bd9cd..MetaCatSet_subobject_classifier_gen : ∀ x0 : ι → ο . x0 1x0 2MetaCat_subobject_classifier_p x0 HomSet lam_id (λ x1 x2 x3 . lam_comp x1) 1 (λ x1 . lam x1 (λ x2 . 0)) 2 (lam 1 (λ x1 . 1)) (λ x1 x2 x3 . lam x2 (λ x4 . If_i (∀ x5 : ο . (∀ x6 . and (x6x1) (ap x3 x6 = x4)x5)x5) 1 0)) (λ x1 x2 x3 x4 x5 x6 . lam x4 (λ x7 . inv x1 (ap x3) (ap x6 x7))) (proof)
Theorem e5b47..MetaCatSet_subobject_classifier_gen_ex : ∀ x0 : ι → ο . x0 1x0 2∀ x1 : ο . (∀ x2 . (∀ x3 : ο . (∀ x4 : ι → ι . (∀ x5 : ο . (∀ x6 . (∀ x7 : ο . (∀ x8 . (∀ x9 : ο . (∀ x10 : ι → ι → ι → ι . (∀ x11 : ο . (∀ x12 : ι → ι → ι → ι → ι → ι → ι . MetaCat_subobject_classifier_p x0 HomSet lam_id (λ x13 x14 x15 . lam_comp x13) x2 x4 x6 x8 x10 x12x11)x11)x9)x9)x7)x7)x5)x5)x3)x3)x1)x1 (proof)
Theorem 25c26..MetaCatSet_subobject_classifier : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι . MetaCat_subobject_classifier_p (λ x12 . True) HomSet lam_id (λ x12 x13 x14 . lam_comp x12) x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Param nat_pnat_p : ιο
Known nat_p_UnivOf_Emptynat_p_UnivOf_Empty : ∀ x0 . nat_p x0x0prim6 0
Known nat_2nat_2 : nat_p 2
Known nat_1nat_1 : nat_p 1
Theorem 341a1..MetaCatHFSet_subobject_classifier : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι . MetaCat_subobject_classifier_p (λ x12 . x12prim6 0) HomSet lam_id (λ x12 x13 x14 . lam_comp x12) x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Known UnivOf_InUnivOf_In : ∀ x0 . x0prim6 x0
Theorem e892d.. : 1prim6 (prim6 0) (proof)
Theorem f6173.. : 2prim6 (prim6 0) (proof)
Theorem 7223a..MetaCatSmallSet_subobject_classifier : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι . MetaCat_subobject_classifier_p (λ x12 . x12prim6 (prim6 0)) HomSet lam_id (λ x12 x13 x14 . lam_comp x12) x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Param omegaomega : ι
Definition MetaCat_nno_pnno_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . λ x6 x7 x8 . λ x9 : ι → ι → ι → ι . and (and (and (and (MetaCat_terminal_p x0 x1 x2 x3 x4 x5) (x0 x6)) (x1 x4 x6 x7)) (x1 x6 x6 x8)) (∀ x10 x11 x12 . x0 x10x1 x4 x10 x11x1 x10 x10 x12and (and (and (x1 x6 x10 (x9 x10 x11 x12)) (x3 x4 x6 x10 (x9 x10 x11 x12) x7 = x11)) (x3 x6 x6 x10 (x9 x10 x11 x12) x8 = x3 x6 x10 x10 x12 (x9 x10 x11 x12))) (∀ x13 . x1 x6 x10 x13x3 x4 x6 x10 x13 x7 = x11x3 x6 x6 x10 x13 x8 = x3 x6 x10 x10 x12 x13x13 = x9 x10 x11 x12))
Param nat_primrecnat_primrec : ι(ιιι) → ιι
Known and5Iand5I : ∀ x0 x1 x2 x3 x4 : ο . x0x1x2x3x4and (and (and (and x0 x1) x2) x3) x4
Known omega_ordsuccomega_ordsucc : ∀ x0 . x0omegaordsucc x0omega
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Known nat_primrec_0nat_primrec_0 : ∀ x0 . ∀ x1 : ι → ι → ι . nat_primrec x0 x1 0 = x0
Known nat_primrec_Snat_primrec_S : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . nat_p x2nat_primrec x0 x1 (ordsucc x2) = x1 x2 (nat_primrec x0 x1 x2)
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known nat_0nat_0 : nat_p 0
Theorem ea037..MetaCatSet_nno_gen : ∀ x0 : ι → ο . x0 1x0 omegaMetaCat_nno_p x0 HomSet lam_id (λ x1 x2 x3 . lam_comp x1) 1 (λ x1 . lam x1 (λ x2 . 0)) omega (lam 1 (λ x1 . 0)) (lam omega ordsucc) (λ x1 x2 x3 . lam omega (nat_primrec (ap x2 0) (λ x4 . ap x3))) (proof)
Theorem 1051b..MetaCatSet_nno_gen_ex : ∀ x0 : ι → ο . x0 1x0 omega∀ x1 : ο . (∀ x2 . (∀ x3 : ο . (∀ x4 : ι → ι . (∀ x5 : ο . (∀ x6 . (∀ x7 : ο . (∀ x8 . (∀ x9 : ο . (∀ x10 . (∀ x11 : ο . (∀ x12 : ι → ι → ι → ι . MetaCat_nno_p x0 HomSet lam_id (λ x13 x14 x15 . lam_comp x13) x2 x4 x6 x8 x10 x12x11)x11)x9)x9)x7)x7)x5)x5)x3)x3)x1)x1 (proof)
Theorem 0e563..MetaCatSet_nno : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι . MetaCat_nno_p (λ x12 . True) HomSet lam_id (λ x12 x13 x14 . lam_comp x12) x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem 7b79d.. : omegaprim6 (prim6 0) (proof)
Theorem 833b6..MetaCatSmallSet_nno : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι . MetaCat_nno_p (λ x12 . x12prim6 (prim6 0)) HomSet lam_id (λ x12 x13 x14 . lam_comp x12) x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)