vout |
---|
PrCit../9d945.. 4.67 barsTMRoQ../8bf53.. ownership of 1fefd.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMSdU../3c3f0.. ownership of 5a751.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMNxE../dddad.. ownership of fc5a2.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMZDf../a009c.. ownership of b0580.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMaV1../1d450.. ownership of ad33b.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMG2b../81ce5.. ownership of 20594.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMV2D../f142c.. ownership of 13847.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMbAb../2585b.. ownership of c5c27.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMbHz../4d852.. ownership of 4a71c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMaEc../b729a.. ownership of fc3a2.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0PUMNW../8a7e6.. doc published by Pr4zB..Definition Church6_p := λ x0 : ι → ι → ι → ι → ι → ι → ι . ∀ x1 : (ι → ι → ι → ι → ι → ι → ι) → ο . x1 (λ x2 x3 x4 x5 x6 x7 . x2) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 . x3) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 . x4) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 . x5) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 . x6) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 . x7) ⟶ x1 x0Definition a4ee9.. := λ x0 : ι → ι → ι → ι → ι → ι → ι . ∀ x1 : (ι → ι → ι → ι → ι → ι → ι) → ο . x1 (λ x2 x3 x4 x5 x6 x7 . x2) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 . x3) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 . x4) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 . x5) ⟶ x1 (λ x2 x3 x4 x5 x6 x7 . x6) ⟶ x1 x0Definition FalseFalse := ∀ x0 : ο . x0Definition TwoRamseyGraph_4_6_Church6_squared_a := λ x0 x1 x2 x3 : ι → ι → ι → ι → ι → ι → ι . λ x4 x5 . x0 (x1 (x2 (x3 x4 x5 x4 x5 x4 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x4 x4 x5 x4 x5) (x3 x5 x5 x4 x4 x5 x5) (x3 x4 x5 x4 x4 x5 x4)) (x2 (x3 x5 x4 x5 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x4 x5 x4) (x3 x4 x5 x5 x4 x5 x4) (x3 x5 x5 x4 x4 x5 x5) (x3 x5 x4 x4 x4 x5 x4)) (x2 (x3 x4 x5 x4 x5 x5 x4) (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x4 x5 x5 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x5) (x3 x4 x4 x4 x5 x5 x4)) (x2 (x3 x5 x4 x5 x4 x4 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x4 x4 x5 x4 x5) (x3 x4 x4 x5 x5 x5 x5) (x3 x4 x4 x5 x4 x5 x4)) (x2 (x3 x4 x5 x5 x4 x4 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x5 x5 x4 x4 x4) (x3 x4 x5 x5 x4 x4 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x4 x4)) (x2 (x3 x5 x4 x4 x5 x5 x4) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x4 x4 x5 x4 x4) (x3 x5 x4 x4 x5 x4 x4) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x4 x4))) (x1 (x2 (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x5 x4 x5 x5 x4) (x3 x4 x5 x5 x5 x4 x5) (x3 x5 x4 x4 x4 x4 x5) (x3 x5 x4 x4 x5 x5 x4) (x3 x5 x4 x5 x5 x5 x4)) (x2 (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x4 x5 x4 x4 x5) (x3 x5 x4 x5 x5 x5 x4) (x3 x4 x5 x4 x4 x5 x4) (x3 x4 x5 x5 x4 x4 x5) (x3 x4 x5 x5 x5 x5 x4)) (x2 (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x4 x5 x5 x4) (x3 x5 x5 x4 x5 x4 x5) (x3 x4 x4 x5 x4 x5 x4) (x3 x4 x5 x5 x4 x5 x4) (x3 x5 x5 x5 x4 x5 x4)) (x2 (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x5 x4 x4 x5) (x3 x5 x5 x5 x4 x5 x4) (x3 x4 x4 x4 x5 x4 x5) (x3 x5 x4 x4 x5 x4 x5) (x3 x5 x5 x4 x5 x5 x4)) (x2 (x3 x4 x5 x4 x5 x5 x5) (x3 x5 x4 x5 x4 x4 x4) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x5 x4) (x3 x5 x4 x5 x4 x4 x4)) (x2 (x3 x5 x4 x5 x4 x5 x5) (x3 x4 x5 x4 x5 x4 x4) (x3 x4 x5 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x4 x5) (x3 x4 x5 x4 x5 x4 x4))) (x1 (x2 (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x5 x5 x5 x4) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x4 x4 x5 x5 x4) (x3 x5 x5 x4 x4 x5 x5) (x3 x5 x5 x4 x5 x4 x4)) (x2 (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x5 x5 x4 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x5 x5 x4 x4 x5) (x3 x5 x5 x4 x4 x5 x5) (x3 x5 x5 x5 x4 x4 x4)) (x2 (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x5 x5 x4) (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x5 x4 x4 x5) (x3 x4 x4 x5 x5 x5 x5) (x3 x4 x5 x5 x5 x4 x4)) (x2 (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x5 x4 x4 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x4 x5 x5 x4) (x3 x4 x4 x5 x5 x5 x5) (x3 x5 x4 x5 x5 x4 x4)) (x2 (x3 x4 x5 x4 x5 x4 x4) (x3 x4 x5 x4 x5 x5 x5) (x3 x4 x5 x4 x5 x4 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x5 x4)) (x2 (x3 x5 x4 x5 x4 x4 x4) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x4 x5 x4 x4 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x4))) (x1 (x2 (x3 x5 x4 x4 x5 x4 x5) (x3 x5 x4 x4 x4 x5 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x5 x5 x4) (x3 x4 x4 x5 x5 x4 x4)) (x2 (x3 x4 x5 x5 x4 x5 x4) (x3 x4 x5 x4 x4 x5 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x5 x4 x4 x5) (x3 x4 x4 x5 x5 x4 x4)) (x2 (x3 x4 x5 x5 x4 x5 x4) (x3 x4 x4 x5 x4 x5 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x4 x5 x5 x5 x5 x4) (x3 x5 x5 x4 x4 x4 x4)) (x2 (x3 x5 x4 x4 x5 x4 x5) (x3 x4 x4 x4 x5 x5 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x4 x4 x4)) (x2 (x3 x4 x5 x5 x4 x4 x4) (x3 x4 x5 x5 x4 x4 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x5 x5 x4 x4 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x4 x5 x5 x4)) (x2 (x3 x5 x4 x4 x5 x4 x4) (x3 x5 x4 x4 x5 x4 x4) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x4 x4 x5 x5 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x5 x4 x5 x4))) (x1 (x2 (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x5 x4 x5 x5 x5) (x3 x4 x5 x4 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x4)) (x2 (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x5 x5 x4 x5 x5) (x3 x5 x4 x4 x4 x4 x5) (x3 x4 x4 x5 x5 x5 x4)) (x2 (x3 x4 x4 x5 x5 x4 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x5 x5 x5 x5 x5) (x3 x4 x4 x4 x5 x5 x4) (x3 x5 x5 x4 x4 x5 x4)) (x2 (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x4 x5 x5 x5 x5) (x3 x4 x4 x5 x4 x4 x5) (x3 x5 x5 x4 x4 x5 x4)) (x2 (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x4 x5 x4 x4 x5) (x3 x4 x4 x4 x4 x4 x4)) (x2 (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x4 x5 x4 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x4) (x3 x4 x4 x4 x4 x4 x4))) (x1 (x2 (x3 x4 x5 x4 x4 x5 x5) (x3 x5 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x5 x5 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x4 x5 x5 x4 x4) (x3 x4 x5 x5 x4 x5 x4)) (x2 (x3 x5 x4 x4 x4 x5 x5) (x3 x4 x5 x5 x5 x4 x5) (x3 x5 x5 x5 x4 x5 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x4 x4 x5 x5 x4 x4) (x3 x5 x4 x4 x5 x5 x4)) (x2 (x3 x4 x4 x4 x5 x5 x5) (x3 x5 x5 x5 x4 x5 x4) (x3 x4 x5 x5 x5 x5 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x5 x4 x4 x4 x4) (x3 x5 x4 x4 x5 x5 x4)) (x2 (x3 x4 x4 x5 x4 x5 x5) (x3 x5 x5 x4 x5 x4 x5) (x3 x5 x4 x5 x5 x5 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x5 x4 x4 x4 x4) (x3 x4 x5 x5 x4 x5 x4)) (x2 (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x4 x4) (x3 x4 x4 x4 x4 x5 x5) (x3 x4 x4 x4 x4 x5 x5) (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x4 x4)) (x2 (x3 x4 x4 x4 x4 x4 x4) (x3 x4 x4 x4 x4 x4 x4) (x3 x4 x4 x4 x4 x4 x4) (x3 x4 x4 x4 x4 x4 x4) (x3 x4 x4 x4 x4 x4 x4) (x3 x4 x4 x4 x4 x4 x4)))Definition TwoRamseyGraph_4_6_Church6_squared_b := λ x0 x1 x2 x3 : ι → ι → ι → ι → ι → ι → ι . λ x4 x5 . x0 (x1 (x2 (x3 x5 x5 x4 x5 x4 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x4 x4 x5 x4 x5) (x3 x5 x5 x4 x4 x5 x5) (x3 x4 x5 x4 x4 x5 x5)) (x2 (x3 x5 x5 x5 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x4 x5 x4) (x3 x4 x5 x5 x4 x5 x4) (x3 x5 x5 x4 x4 x5 x5) (x3 x5 x4 x4 x4 x5 x5)) (x2 (x3 x4 x5 x5 x5 x5 x4) (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x4 x5 x5 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x5) (x3 x4 x4 x4 x5 x5 x5)) (x2 (x3 x5 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x4 x4 x5 x4 x5) (x3 x4 x4 x5 x5 x5 x5) (x3 x4 x4 x5 x4 x5 x5)) (x2 (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x5 x5 x4 x4 x4) (x3 x4 x5 x5 x4 x4 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x4 x5)) (x2 (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x4 x4 x5 x4 x4) (x3 x5 x4 x4 x5 x4 x4) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x4 x5))) (x1 (x2 (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x5 x5 x4) (x3 x4 x5 x5 x5 x4 x5) (x3 x5 x4 x4 x4 x4 x5) (x3 x5 x4 x4 x5 x5 x4) (x3 x5 x4 x5 x5 x5 x5)) (x2 (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x5 x4 x4 x5) (x3 x5 x4 x5 x5 x5 x4) (x3 x4 x5 x4 x4 x5 x4) (x3 x4 x5 x5 x4 x4 x5) (x3 x4 x5 x5 x5 x5 x5)) (x2 (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x5 x5 x5 x4) (x3 x5 x5 x4 x5 x4 x5) (x3 x4 x4 x5 x4 x5 x4) (x3 x4 x5 x5 x4 x5 x4) (x3 x5 x5 x5 x4 x5 x5)) (x2 (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x5 x5 x4 x5) (x3 x5 x5 x5 x4 x5 x4) (x3 x4 x4 x4 x5 x4 x5) (x3 x5 x4 x4 x5 x4 x5) (x3 x5 x5 x4 x5 x5 x5)) (x2 (x3 x4 x5 x4 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x4) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x5 x4) (x3 x5 x4 x5 x4 x4 x5)) (x2 (x3 x5 x4 x5 x4 x5 x5) (x3 x4 x5 x4 x5 x4 x5) (x3 x4 x5 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x4 x5) (x3 x4 x5 x4 x5 x4 x5))) (x1 (x2 (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x5 x5 x5 x4) (x3 x5 x4 x5 x5 x4 x5) (x3 x5 x4 x4 x5 x5 x4) (x3 x5 x5 x4 x4 x5 x5) (x3 x5 x5 x4 x5 x4 x5)) (x2 (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x5 x5 x4 x5) (x3 x4 x5 x5 x5 x5 x4) (x3 x4 x5 x5 x4 x4 x5) (x3 x5 x5 x4 x4 x5 x5) (x3 x5 x5 x5 x4 x4 x5)) (x2 (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x5 x5 x4) (x3 x5 x5 x5 x4 x4 x5) (x3 x4 x5 x5 x4 x4 x5) (x3 x4 x4 x5 x5 x5 x5) (x3 x4 x5 x5 x5 x4 x5)) (x2 (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x5 x4 x4 x5) (x3 x5 x5 x4 x5 x5 x4) (x3 x5 x4 x4 x5 x5 x4) (x3 x4 x4 x5 x5 x5 x5) (x3 x5 x4 x5 x5 x4 x5)) (x2 (x3 x4 x5 x4 x5 x4 x4) (x3 x4 x5 x4 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x5 x5)) (x2 (x3 x5 x4 x5 x4 x4 x4) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x4 x5 x4 x4 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x5))) (x1 (x2 (x3 x5 x4 x4 x5 x4 x5) (x3 x5 x4 x4 x4 x5 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x5 x5 x4) (x3 x4 x4 x5 x5 x4 x5)) (x2 (x3 x4 x5 x5 x4 x5 x4) (x3 x4 x5 x4 x4 x5 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x4 x5 x5 x5 x5 x4) (x3 x5 x5 x5 x4 x4 x5) (x3 x4 x4 x5 x5 x4 x5)) (x2 (x3 x4 x5 x5 x4 x5 x4) (x3 x4 x4 x5 x4 x5 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x5 x4 x5 x4) (x3 x4 x5 x5 x5 x5 x4) (x3 x5 x5 x4 x4 x4 x5)) (x2 (x3 x5 x4 x4 x5 x4 x5) (x3 x4 x4 x4 x5 x5 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x4 x5 x4 x5) (x3 x5 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x4 x4 x5)) (x2 (x3 x4 x5 x5 x4 x4 x4) (x3 x4 x5 x5 x4 x4 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x4 x5 x5 x5)) (x2 (x3 x5 x4 x4 x5 x4 x4) (x3 x5 x4 x4 x5 x4 x4) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x5 x4 x5 x5))) (x1 (x2 (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x5 x4 x5 x5 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x5)) (x2 (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x5 x5 x4 x5 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x4 x5 x5 x5 x5)) (x2 (x3 x4 x4 x5 x5 x4 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x5 x5 x5 x5 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x4 x5 x5)) (x2 (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x4 x5 x5 x5 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x4 x5 x5)) (x2 (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x4 x5 x4 x5 x5) (x3 x4 x4 x4 x4 x4 x5)) (x2 (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x4 x5 x4 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x5) (x3 x4 x4 x4 x4 x4 x5))) (x1 (x2 (x3 x4 x5 x4 x4 x5 x5) (x3 x5 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x5 x5 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x4 x5 x5 x4 x4) (x3 x5 x5 x5 x4 x5 x5)) (x2 (x3 x5 x4 x4 x4 x5 x5) (x3 x4 x5 x5 x5 x4 x5) (x3 x5 x5 x5 x4 x5 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x4 x4 x5 x5 x4 x4) (x3 x5 x5 x4 x5 x5 x5)) (x2 (x3 x4 x4 x4 x5 x5 x5) (x3 x5 x5 x5 x4 x5 x4) (x3 x4 x5 x5 x5 x5 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x5 x4 x4 x4 x4) (x3 x5 x4 x5 x5 x5 x5)) (x2 (x3 x4 x4 x5 x4 x5 x5) (x3 x5 x5 x4 x5 x4 x5) (x3 x5 x4 x5 x5 x5 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x5 x4 x4 x4 x4) (x3 x4 x5 x5 x5 x5 x5)) (x2 (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x4 x4) (x3 x4 x4 x4 x4 x5 x5) (x3 x4 x4 x4 x4 x5 x5) (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x5 x5)) (x2 (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x5)))Known FalseEFalseE : False ⟶ ∀ x0 : ο . x0Known 768c1.. : ((λ x1 x2 . x2) = λ x1 x2 . x1) ⟶ ∀ x0 : ο . x0Theorem 4a71c.. : ∀ x0 x1 x2 : ι → ι → ι → ι → ι → ι → ι . Church6_p x0 ⟶ a4ee9.. x1 ⟶ Church6_p x2 ⟶ ((x0 = λ x4 x5 x6 x7 x8 x9 . x9) ⟶ False) ⟶ (TwoRamseyGraph_4_6_Church6_squared_a (λ x4 x5 x6 x7 x8 x9 . x9) x0 x1 x2 = λ x4 x5 . x4) ⟶ TwoRamseyGraph_4_6_Church6_squared_b (λ x4 x5 x6 x7 x8 x9 . x9) x0 x1 x2 = λ x4 x5 . x4 (proof)Known 8d3e3.. : ∀ x0 x1 x2 x3 : ι → ι → ι → ι → ι → ι → ι . a4ee9.. x0 ⟶ Church6_p x1 ⟶ a4ee9.. x2 ⟶ Church6_p x3 ⟶ (x0 = x2 ⟶ x1 = x3 ⟶ False) ⟶ (TwoRamseyGraph_4_6_Church6_squared_a x0 x1 x2 x3 = λ x5 x6 . x5) ⟶ TwoRamseyGraph_4_6_Church6_squared_b x0 x1 x2 x3 = λ x5 x6 . x5Known 9367f.. : a4ee9.. (λ x0 x1 x2 x3 x4 x5 . x0)Known 6b245.. : a4ee9.. (λ x0 x1 x2 x3 x4 x5 . x1)Known 32eba.. : a4ee9.. (λ x0 x1 x2 x3 x4 x5 . x2)Known 77b75.. : a4ee9.. (λ x0 x1 x2 x3 x4 x5 . x3)Known eca3f.. : a4ee9.. (λ x0 x1 x2 x3 x4 x5 . x4)Theorem 13847.. : ∀ x0 x1 x2 x3 : ι → ι → ι → ι → ι → ι → ι . Church6_p x0 ⟶ Church6_p x1 ⟶ a4ee9.. x2 ⟶ Church6_p x3 ⟶ ((x0 = λ x5 x6 x7 x8 x9 x10 . x10) ⟶ (x1 = λ x5 x6 x7 x8 x9 x10 . x10) ⟶ False) ⟶ (x0 = x2 ⟶ x1 = x3 ⟶ False) ⟶ (TwoRamseyGraph_4_6_Church6_squared_a x0 x1 x2 x3 = λ x5 x6 . x5) ⟶ TwoRamseyGraph_4_6_Church6_squared_b x0 x1 x2 x3 = λ x5 x6 . x5 (proof)Theorem ad33b.. : ∀ x0 x1 x2 : ι → ι → ι → ι → ι → ι → ι . Church6_p x0 ⟶ Church6_p x1 ⟶ a4ee9.. x2 ⟶ ((x0 = λ x4 x5 x6 x7 x8 x9 . x9) ⟶ (x1 = λ x4 x5 x6 x7 x8 x9 . x9) ⟶ False) ⟶ ((x0 = λ x4 x5 x6 x7 x8 x9 . x9) ⟶ x1 = x2 ⟶ False) ⟶ (TwoRamseyGraph_4_6_Church6_squared_a x0 x1 (λ x4 x5 x6 x7 x8 x9 . x9) x2 = λ x4 x5 . x4) ⟶ TwoRamseyGraph_4_6_Church6_squared_b x0 x1 (λ x4 x5 x6 x7 x8 x9 . x9) x2 = λ x4 x5 . x4 (proof)Theorem fc5a2.. : ∀ x0 x1 x2 x3 : ι → ι → ι → ι → ι → ι → ι . Church6_p x0 ⟶ Church6_p x1 ⟶ Church6_p x2 ⟶ Church6_p x3 ⟶ ((x0 = λ x5 x6 x7 x8 x9 x10 . x10) ⟶ (x1 = λ x5 x6 x7 x8 x9 x10 . x10) ⟶ False) ⟶ ((x2 = λ x5 x6 x7 x8 x9 x10 . x10) ⟶ (x3 = λ x5 x6 x7 x8 x9 x10 . x10) ⟶ False) ⟶ (x0 = x2 ⟶ x1 = x3 ⟶ False) ⟶ (TwoRamseyGraph_4_6_Church6_squared_a x0 x1 x2 x3 = λ x5 x6 . x5) ⟶ TwoRamseyGraph_4_6_Church6_squared_b x0 x1 x2 x3 = λ x5 x6 . x5 (proof)Param u6 : ιParam u5 : ιParam nth_6_tuple : ι → ι → ι → ι → ι → ι → ι → ιDefinition TwoRamseyGraph_4_6_35_a := λ x0 x1 x2 x3 . TwoRamseyGraph_4_6_Church6_squared_a (nth_6_tuple x0) (nth_6_tuple x1) (nth_6_tuple x2) (nth_6_tuple x3) = λ x5 x6 . x5Definition TwoRamseyGraph_4_6_35_b := λ x0 x1 x2 x3 . x0 ∈ u6 ⟶ x1 ∈ u6 ⟶ x2 ∈ u6 ⟶ x3 ∈ u6 ⟶ TwoRamseyGraph_4_6_Church6_squared_b (nth_6_tuple x0) (nth_6_tuple x1) (nth_6_tuple x2) (nth_6_tuple x3) = λ x5 x6 . x5Known 3b8c0.. : ∀ x0 . x0 ∈ u6 ⟶ Church6_p (nth_6_tuple x0)Known fed6d.. : nth_6_tuple u5 = λ x1 x2 x3 x4 x5 x6 . x6Known 60d0e.. : ∀ x0 . x0 ∈ u6 ⟶ ∀ x1 . x1 ∈ u6 ⟶ nth_6_tuple x0 = nth_6_tuple x1 ⟶ x0 = x1Known In_5_6In_5_6 : u5 ∈ u6Theorem 1fefd.. : ∀ x0 . x0 ∈ u6 ⟶ ∀ x1 . x1 ∈ u6 ⟶ ∀ x2 . x2 ∈ u6 ⟶ ∀ x3 . x3 ∈ u6 ⟶ (x0 = u5 ⟶ x1 = u5 ⟶ False) ⟶ (x2 = u5 ⟶ x3 = u5 ⟶ False) ⟶ (x0 = x2 ⟶ x1 = x3 ⟶ False) ⟶ TwoRamseyGraph_4_6_35_a x0 x1 x2 x3 ⟶ TwoRamseyGraph_4_6_35_b x0 x1 x2 x3 (proof) |
|