Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrMnw..
/
a9df4..
PUMjz..
/
2f166..
vout
PrMnw..
/
7f076..
0.10 bars
TMVav..
/
9cf27..
ownership of
5d62a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVsD..
/
93b0d..
ownership of
7f9ef..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMN2m..
/
1d08f..
ownership of
7fbaf..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJxv..
/
ef627..
ownership of
e04fe..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMa1g..
/
f6a67..
ownership of
7c727..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMa2w..
/
49c39..
ownership of
c6c45..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGmY..
/
341b8..
ownership of
2dc42..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPA4..
/
419c1..
ownership of
f0c05..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbpc..
/
ccc71..
ownership of
dbcab..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TML7a..
/
2f4c3..
ownership of
b180a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJsP..
/
64ef9..
ownership of
8bd9a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMH5G..
/
ba390..
ownership of
7b831..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXyc..
/
c4cc6..
ownership of
3af58..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFaR..
/
2574c..
ownership of
c950b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaEK..
/
fba56..
ownership of
23761..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKn9..
/
1b328..
ownership of
0d4cf..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSQ5..
/
9bd58..
ownership of
22035..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRTC..
/
de1a1..
ownership of
2baf3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMK2t..
/
c6082..
ownership of
81ddf..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRWw..
/
ae34e..
ownership of
645fa..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGgE..
/
3d5ec..
ownership of
7c217..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJP9..
/
76e6f..
ownership of
16693..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEgK..
/
cbeb8..
ownership of
28913..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEnb..
/
81952..
ownership of
8b493..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcTy..
/
a8799..
ownership of
f997c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZS7..
/
0e76c..
ownership of
1d523..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbmg..
/
f5290..
ownership of
7290b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYYC..
/
3ef92..
ownership of
0e829..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHuY..
/
2fab8..
ownership of
e907c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWBh..
/
ff856..
ownership of
f40c8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUNh..
/
9e334..
ownership of
f708f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNa3..
/
9ddf4..
ownership of
b3de2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbWK..
/
8fb51..
ownership of
6576e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbb9..
/
f4413..
ownership of
3358d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFBd..
/
37e94..
ownership of
4f53a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXEn..
/
5f335..
ownership of
9ce8c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUYnQ..
/
5a572..
doc published by
PrCmT..
Known
ax_cc__ax_dc__ax_ac__ax_ac2__df_gch__df_wina__df_ina__df_wun__df_wunc__df_tsk__df_gru__ax_groth__df_tskm__df_ni__df_pli__df_mi__df_lti__df_plpq
:
∀ x0 : ο .
(
(
∀ x1 .
wbr
(
cv
x1
)
com
cen
⟶
wex
(
λ x2 .
wral
(
λ x3 .
wne
(
cv
x3
)
c0
⟶
wcel
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cv
x3
)
)
(
λ x3 .
cv
x1
)
)
)
⟶
(
∀ x1 .
wa
(
wex
(
λ x2 .
wex
(
λ x3 .
wbr
(
cv
x2
)
(
cv
x3
)
(
cv
x1
)
)
)
)
(
wss
(
crn
(
cv
x1
)
)
(
cdm
(
cv
x1
)
)
)
⟶
wex
(
λ x2 .
wral
(
λ x3 .
wbr
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
csuc
(
cv
x3
)
)
(
cv
x2
)
)
(
cv
x1
)
)
(
λ x3 .
com
)
)
)
⟶
(
∀ x1 .
wex
(
λ x2 .
∀ x3 x4 .
wa
(
wcel
(
cv
x3
)
(
cv
x4
)
)
(
wcel
(
cv
x4
)
(
cv
x1
)
)
⟶
wex
(
λ x5 .
∀ x6 .
wb
(
wex
(
λ x7 .
wa
(
wa
(
wcel
(
cv
x6
)
(
cv
x4
)
)
(
wcel
(
cv
x4
)
(
cv
x7
)
)
)
(
wa
(
wcel
(
cv
x6
)
(
cv
x7
)
)
(
wcel
(
cv
x7
)
(
cv
x2
)
)
)
)
)
(
wceq
(
cv
x6
)
(
cv
x5
)
)
)
)
)
⟶
(
∀ x1 .
wex
(
λ x2 .
∀ x3 .
wex
(
λ x4 .
∀ x5 .
wo
(
wa
(
wcel
(
cv
x2
)
(
cv
x1
)
)
(
wcel
(
cv
x3
)
(
cv
x2
)
⟶
wa
(
wa
(
wcel
(
cv
x4
)
(
cv
x1
)
)
(
wn
(
wceq
(
cv
x2
)
(
cv
x4
)
)
)
)
(
wcel
(
cv
x3
)
(
cv
x4
)
)
)
)
(
wa
(
wn
(
wcel
(
cv
x2
)
(
cv
x1
)
)
)
(
wcel
(
cv
x3
)
(
cv
x1
)
⟶
wa
(
wa
(
wcel
(
cv
x4
)
(
cv
x3
)
)
(
wcel
(
cv
x4
)
(
cv
x2
)
)
)
(
wa
(
wcel
(
cv
x5
)
(
cv
x3
)
)
(
wcel
(
cv
x5
)
(
cv
x2
)
)
⟶
wceq
(
cv
x5
)
(
cv
x4
)
)
)
)
)
)
)
⟶
wceq
cgch
(
cun
cfn
(
cab
(
λ x1 .
∀ x2 .
wn
(
wa
(
wbr
(
cv
x1
)
(
cv
x2
)
csdm
)
(
wbr
(
cv
x2
)
(
cpw
(
cv
x1
)
)
csdm
)
)
)
)
)
⟶
wceq
cwina
(
cab
(
λ x1 .
w3a
(
wne
(
cv
x1
)
c0
)
(
wceq
(
cfv
(
cv
x1
)
ccf
)
(
cv
x1
)
)
(
wral
(
λ x2 .
wrex
(
λ x3 .
wbr
(
cv
x2
)
(
cv
x3
)
csdm
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cv
x1
)
)
)
)
⟶
wceq
cina
(
cab
(
λ x1 .
w3a
(
wne
(
cv
x1
)
c0
)
(
wceq
(
cfv
(
cv
x1
)
ccf
)
(
cv
x1
)
)
(
wral
(
λ x2 .
wbr
(
cpw
(
cv
x2
)
)
(
cv
x1
)
csdm
)
(
λ x2 .
cv
x1
)
)
)
)
⟶
wceq
cwun
(
cab
(
λ x1 .
w3a
(
wtr
(
cv
x1
)
)
(
wne
(
cv
x1
)
c0
)
(
wral
(
λ x2 .
w3a
(
wcel
(
cuni
(
cv
x2
)
)
(
cv
x1
)
)
(
wcel
(
cpw
(
cv
x2
)
)
(
cv
x1
)
)
(
wral
(
λ x3 .
wcel
(
cpr
(
cv
x2
)
(
cv
x3
)
)
(
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
)
(
λ x2 .
cv
x1
)
)
)
)
⟶
wceq
cwunm
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cint
(
crab
(
λ x2 .
wss
(
cv
x1
)
(
cv
x2
)
)
(
λ x2 .
cwun
)
)
)
)
⟶
wceq
ctsk
(
cab
(
λ x1 .
wa
(
wral
(
λ x2 .
wa
(
wss
(
cpw
(
cv
x2
)
)
(
cv
x1
)
)
(
wrex
(
λ x3 .
wss
(
cpw
(
cv
x2
)
)
(
cv
x3
)
)
(
λ x3 .
cv
x1
)
)
)
(
λ x2 .
cv
x1
)
)
(
wral
(
λ x2 .
wo
(
wbr
(
cv
x2
)
(
cv
x1
)
cen
)
(
wcel
(
cv
x2
)
(
cv
x1
)
)
)
(
λ x2 .
cpw
(
cv
x1
)
)
)
)
)
⟶
wceq
cgru
(
cab
(
λ x1 .
wa
(
wtr
(
cv
x1
)
)
(
wral
(
λ x2 .
w3a
(
wcel
(
cpw
(
cv
x2
)
)
(
cv
x1
)
)
(
wral
(
λ x3 .
wcel
(
cpr
(
cv
x2
)
(
cv
x3
)
)
(
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
wral
(
λ x3 .
wcel
(
cuni
(
crn
(
cv
x3
)
)
)
(
cv
x1
)
)
(
λ x3 .
co
(
cv
x1
)
(
cv
x2
)
cmap
)
)
)
(
λ x2 .
cv
x1
)
)
)
)
⟶
(
∀ x1 .
wex
(
λ x2 .
w3a
(
wcel
(
cv
x1
)
(
cv
x2
)
)
(
wral
(
λ x3 .
wa
(
∀ x4 .
wss
(
cv
x4
)
(
cv
x3
)
⟶
wcel
(
cv
x4
)
(
cv
x2
)
)
(
wrex
(
λ x4 .
∀ x5 .
wss
(
cv
x5
)
(
cv
x3
)
⟶
wcel
(
cv
x5
)
(
cv
x4
)
)
(
λ x4 .
cv
x2
)
)
)
(
λ x3 .
cv
x2
)
)
(
∀ x3 .
wss
(
cv
x3
)
(
cv
x2
)
⟶
wo
(
wbr
(
cv
x3
)
(
cv
x2
)
cen
)
(
wcel
(
cv
x3
)
(
cv
x2
)
)
)
)
)
⟶
wceq
ctskm
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cint
(
crab
(
λ x2 .
wcel
(
cv
x1
)
(
cv
x2
)
)
(
λ x2 .
ctsk
)
)
)
)
⟶
wceq
cnpi
(
cdif
com
(
csn
c0
)
)
⟶
wceq
cpli
(
cres
coa
(
cxp
cnpi
cnpi
)
)
⟶
wceq
cmi
(
cres
comu
(
cxp
cnpi
cnpi
)
)
⟶
wceq
clti
(
cin
cep
(
cxp
cnpi
cnpi
)
)
⟶
wceq
cplpq
(
cmpt2
(
λ x1 x2 .
cxp
cnpi
cnpi
)
(
λ x1 x2 .
cxp
cnpi
cnpi
)
(
λ x1 x2 .
cop
(
co
(
co
(
cfv
(
cv
x1
)
c1st
)
(
cfv
(
cv
x2
)
c2nd
)
cmi
)
(
co
(
cfv
(
cv
x2
)
c1st
)
(
cfv
(
cv
x1
)
c2nd
)
cmi
)
cpli
)
(
co
(
cfv
(
cv
x1
)
c2nd
)
(
cfv
(
cv
x2
)
c2nd
)
cmi
)
)
)
⟶
x0
)
⟶
x0
Theorem
ax_cc
:
∀ x0 .
wbr
(
cv
x0
)
com
cen
⟶
wex
(
λ x1 .
wral
(
λ x2 .
wne
(
cv
x2
)
c0
⟶
wcel
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cv
x2
)
)
(
λ x2 .
cv
x0
)
)
(proof)
Theorem
ax_dc
:
∀ x0 .
wa
(
wex
(
λ x1 .
wex
(
λ x2 .
wbr
(
cv
x1
)
(
cv
x2
)
(
cv
x0
)
)
)
)
(
wss
(
crn
(
cv
x0
)
)
(
cdm
(
cv
x0
)
)
)
⟶
wex
(
λ x1 .
wral
(
λ x2 .
wbr
(
cfv
(
cv
x2
)
(
cv
x1
)
)
(
cfv
(
csuc
(
cv
x2
)
)
(
cv
x1
)
)
(
cv
x0
)
)
(
λ x2 .
com
)
)
(proof)
Theorem
ax_ac
:
∀ x0 .
wex
(
λ x1 .
∀ x2 x3 .
wa
(
wcel
(
cv
x2
)
(
cv
x3
)
)
(
wcel
(
cv
x3
)
(
cv
x0
)
)
⟶
wex
(
λ x4 .
∀ x5 .
wb
(
wex
(
λ x6 .
wa
(
wa
(
wcel
(
cv
x5
)
(
cv
x3
)
)
(
wcel
(
cv
x3
)
(
cv
x6
)
)
)
(
wa
(
wcel
(
cv
x5
)
(
cv
x6
)
)
(
wcel
(
cv
x6
)
(
cv
x1
)
)
)
)
)
(
wceq
(
cv
x5
)
(
cv
x4
)
)
)
)
(proof)
Theorem
ax_ac2
:
∀ x0 .
wex
(
λ x1 .
∀ x2 .
wex
(
λ x3 .
∀ x4 .
wo
(
wa
(
wcel
(
cv
x1
)
(
cv
x0
)
)
(
wcel
(
cv
x2
)
(
cv
x1
)
⟶
wa
(
wa
(
wcel
(
cv
x3
)
(
cv
x0
)
)
(
wn
(
wceq
(
cv
x1
)
(
cv
x3
)
)
)
)
(
wcel
(
cv
x2
)
(
cv
x3
)
)
)
)
(
wa
(
wn
(
wcel
(
cv
x1
)
(
cv
x0
)
)
)
(
wcel
(
cv
x2
)
(
cv
x0
)
⟶
wa
(
wa
(
wcel
(
cv
x3
)
(
cv
x2
)
)
(
wcel
(
cv
x3
)
(
cv
x1
)
)
)
(
wa
(
wcel
(
cv
x4
)
(
cv
x2
)
)
(
wcel
(
cv
x4
)
(
cv
x1
)
)
⟶
wceq
(
cv
x4
)
(
cv
x3
)
)
)
)
)
)
(proof)
Theorem
df_gch
:
wceq
cgch
(
cun
cfn
(
cab
(
λ x0 .
∀ x1 .
wn
(
wa
(
wbr
(
cv
x0
)
(
cv
x1
)
csdm
)
(
wbr
(
cv
x1
)
(
cpw
(
cv
x0
)
)
csdm
)
)
)
)
)
(proof)
Theorem
df_wina
:
wceq
cwina
(
cab
(
λ x0 .
w3a
(
wne
(
cv
x0
)
c0
)
(
wceq
(
cfv
(
cv
x0
)
ccf
)
(
cv
x0
)
)
(
wral
(
λ x1 .
wrex
(
λ x2 .
wbr
(
cv
x1
)
(
cv
x2
)
csdm
)
(
λ x2 .
cv
x0
)
)
(
λ x1 .
cv
x0
)
)
)
)
(proof)
Theorem
df_ina
:
wceq
cina
(
cab
(
λ x0 .
w3a
(
wne
(
cv
x0
)
c0
)
(
wceq
(
cfv
(
cv
x0
)
ccf
)
(
cv
x0
)
)
(
wral
(
λ x1 .
wbr
(
cpw
(
cv
x1
)
)
(
cv
x0
)
csdm
)
(
λ x1 .
cv
x0
)
)
)
)
(proof)
Theorem
df_wun
:
wceq
cwun
(
cab
(
λ x0 .
w3a
(
wtr
(
cv
x0
)
)
(
wne
(
cv
x0
)
c0
)
(
wral
(
λ x1 .
w3a
(
wcel
(
cuni
(
cv
x1
)
)
(
cv
x0
)
)
(
wcel
(
cpw
(
cv
x1
)
)
(
cv
x0
)
)
(
wral
(
λ x2 .
wcel
(
cpr
(
cv
x1
)
(
cv
x2
)
)
(
cv
x0
)
)
(
λ x2 .
cv
x0
)
)
)
(
λ x1 .
cv
x0
)
)
)
)
(proof)
Theorem
df_wunc
:
wceq
cwunm
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cint
(
crab
(
λ x1 .
wss
(
cv
x0
)
(
cv
x1
)
)
(
λ x1 .
cwun
)
)
)
)
(proof)
Theorem
df_tsk
:
wceq
ctsk
(
cab
(
λ x0 .
wa
(
wral
(
λ x1 .
wa
(
wss
(
cpw
(
cv
x1
)
)
(
cv
x0
)
)
(
wrex
(
λ x2 .
wss
(
cpw
(
cv
x1
)
)
(
cv
x2
)
)
(
λ x2 .
cv
x0
)
)
)
(
λ x1 .
cv
x0
)
)
(
wral
(
λ x1 .
wo
(
wbr
(
cv
x1
)
(
cv
x0
)
cen
)
(
wcel
(
cv
x1
)
(
cv
x0
)
)
)
(
λ x1 .
cpw
(
cv
x0
)
)
)
)
)
(proof)
Theorem
df_gru
:
wceq
cgru
(
cab
(
λ x0 .
wa
(
wtr
(
cv
x0
)
)
(
wral
(
λ x1 .
w3a
(
wcel
(
cpw
(
cv
x1
)
)
(
cv
x0
)
)
(
wral
(
λ x2 .
wcel
(
cpr
(
cv
x1
)
(
cv
x2
)
)
(
cv
x0
)
)
(
λ x2 .
cv
x0
)
)
(
wral
(
λ x2 .
wcel
(
cuni
(
crn
(
cv
x2
)
)
)
(
cv
x0
)
)
(
λ x2 .
co
(
cv
x0
)
(
cv
x1
)
cmap
)
)
)
(
λ x1 .
cv
x0
)
)
)
)
(proof)
Theorem
ax_groth
:
∀ x0 .
wex
(
λ x1 .
w3a
(
wcel
(
cv
x0
)
(
cv
x1
)
)
(
wral
(
λ x2 .
wa
(
∀ x3 .
wss
(
cv
x3
)
(
cv
x2
)
⟶
wcel
(
cv
x3
)
(
cv
x1
)
)
(
wrex
(
λ x3 .
∀ x4 .
wss
(
cv
x4
)
(
cv
x2
)
⟶
wcel
(
cv
x4
)
(
cv
x3
)
)
(
λ x3 .
cv
x1
)
)
)
(
λ x2 .
cv
x1
)
)
(
∀ x2 .
wss
(
cv
x2
)
(
cv
x1
)
⟶
wo
(
wbr
(
cv
x2
)
(
cv
x1
)
cen
)
(
wcel
(
cv
x2
)
(
cv
x1
)
)
)
)
(proof)
Theorem
df_tskm
:
wceq
ctskm
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cint
(
crab
(
λ x1 .
wcel
(
cv
x0
)
(
cv
x1
)
)
(
λ x1 .
ctsk
)
)
)
)
(proof)
Theorem
df_ni
:
wceq
cnpi
(
cdif
com
(
csn
c0
)
)
(proof)
Theorem
df_pli
:
wceq
cpli
(
cres
coa
(
cxp
cnpi
cnpi
)
)
(proof)
Theorem
df_mi
:
wceq
cmi
(
cres
comu
(
cxp
cnpi
cnpi
)
)
(proof)
Theorem
df_lti
:
wceq
clti
(
cin
cep
(
cxp
cnpi
cnpi
)
)
(proof)
Theorem
df_plpq
:
wceq
cplpq
(
cmpt2
(
λ x0 x1 .
cxp
cnpi
cnpi
)
(
λ x0 x1 .
cxp
cnpi
cnpi
)
(
λ x0 x1 .
cop
(
co
(
co
(
cfv
(
cv
x0
)
c1st
)
(
cfv
(
cv
x1
)
c2nd
)
cmi
)
(
co
(
cfv
(
cv
x1
)
c1st
)
(
cfv
(
cv
x0
)
c2nd
)
cmi
)
cpli
)
(
co
(
cfv
(
cv
x0
)
c2nd
)
(
cfv
(
cv
x1
)
c2nd
)
cmi
)
)
)
(proof)