Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrD1n..
/
316ec..
PUWJm..
/
0ea86..
vout
PrD1n..
/
e379e..
7.13 bars
TMPnd..
/
c4c35..
negprop ownership controlledby
PrGxv..
upto 0
TMaJK..
/
ba006..
ownership of
b6c01..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFdm..
/
27f1d..
ownership of
1588a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaxW..
/
a2265..
ownership of
96df8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUwk..
/
f2b1e..
ownership of
de997..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMiS..
/
48711..
ownership of
6891d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNHo..
/
017b1..
ownership of
dcc77..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFZm..
/
70380..
ownership of
1a774..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJmM..
/
e3a42..
ownership of
364a4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbEC..
/
e0d20..
ownership of
6d5ea..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVcz..
/
39b54..
ownership of
cc14b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSLV..
/
76d24..
ownership of
82f14..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcjL..
/
9afd8..
ownership of
4c282..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMG5y..
/
92568..
ownership of
9dc64..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTjW..
/
7ce44..
ownership of
838f5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPm4..
/
970ff..
ownership of
05df6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHNA..
/
e292f..
ownership of
4848f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWXC..
/
118d9..
ownership of
b24e2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGpB..
/
42c36..
ownership of
a866d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQQC..
/
54a59..
ownership of
826e0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMP3E..
/
11bde..
ownership of
df92f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXfS..
/
1d710..
ownership of
75262..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNwb..
/
a12ea..
ownership of
4646b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNUL..
/
58e92..
ownership of
facf7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTK5..
/
2069c..
ownership of
9eb52..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbQL..
/
c8ba1..
ownership of
fbf8c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaeY..
/
b151a..
ownership of
842c4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKw3..
/
06155..
ownership of
c4252..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYex..
/
7853a..
ownership of
7b384..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHjY..
/
80761..
ownership of
e5778..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdTT..
/
80928..
ownership of
28895..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRLW..
/
657f4..
ownership of
f684d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUNN..
/
d2cc7..
ownership of
eaf84..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLLj..
/
f80e2..
ownership of
a1c68..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMT6t..
/
f4e5f..
ownership of
a9458..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLdS..
/
f97bf..
ownership of
2b512..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPto..
/
815df..
ownership of
ca965..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVXq..
/
66422..
ownership of
9efcd..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdRN..
/
82145..
ownership of
49bac..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZGj..
/
57d41..
ownership of
063ac..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFVN..
/
be9f7..
ownership of
4ac44..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLrV..
/
a2507..
ownership of
67376..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXzr..
/
2e933..
ownership of
21981..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMK19..
/
1c156..
ownership of
ee7eb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMP2Z..
/
59c0a..
ownership of
7fc32..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMawu..
/
d3ff6..
ownership of
42e43..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdwR..
/
6f957..
ownership of
b74db..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVgH..
/
fc0f8..
ownership of
2eb6f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTra..
/
9fb2d..
ownership of
74f17..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdqP..
/
69f76..
ownership of
84af1..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGTE..
/
592e4..
ownership of
a15eb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMX1j..
/
224b3..
ownership of
af84e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFDT..
/
909c8..
ownership of
9c3c4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQVZ..
/
5e285..
ownership of
ffefa..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSQQ..
/
5d0ef..
ownership of
0401a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQG3..
/
26d62..
ownership of
ffc37..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMX5N..
/
e5566..
ownership of
edb54..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMK7b..
/
2c57a..
ownership of
9f429..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMz1..
/
ed20c..
ownership of
f254e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMEzK..
/
e6ed4..
ownership of
6774e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdE1..
/
5ad89..
ownership of
92a47..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaV5..
/
e4c99..
ownership of
fb77a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPm5..
/
d1feb..
ownership of
7a30d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZnz..
/
28179..
ownership of
cdd8a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNeD..
/
36d52..
ownership of
b5c2a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaWG..
/
45cb7..
ownership of
62476..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJDK..
/
1b798..
ownership of
7b83d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRYQ..
/
974af..
ownership of
36b24..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPLY..
/
349e3..
ownership of
ee30e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFZg..
/
f932a..
ownership of
ff84b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMdi..
/
69b74..
ownership of
910e9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRkB..
/
84ceb..
ownership of
f9749..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTJw..
/
a64b6..
ownership of
ddb1c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRxb..
/
ceb68..
ownership of
38968..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNLa..
/
bba42..
ownership of
0f3ad..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUV1..
/
133c8..
ownership of
54459..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYgg..
/
c0399..
ownership of
e58a3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMS69..
/
c50f3..
ownership of
a5def..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMadM..
/
91847..
ownership of
8cb3d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJxD..
/
901a9..
ownership of
4bdb9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcZD..
/
37dde..
ownership of
81251..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMN5f..
/
51fed..
ownership of
0482c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdnU..
/
06bd7..
ownership of
624f0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHQH..
/
72211..
ownership of
0a32f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKNe..
/
fb61a..
ownership of
80291..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaw8..
/
00f48..
ownership of
b8b08..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZQE..
/
cc3eb..
ownership of
ef8c9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMT2h..
/
e91c1..
ownership of
a1a1b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPxG..
/
dd3e4..
ownership of
2bb03..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbb1..
/
2d9cd..
ownership of
becdb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMchR..
/
af1fd..
ownership of
746a6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJGZ..
/
c3616..
ownership of
cec81..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMN8y..
/
9c10c..
ownership of
34736..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGwi..
/
b7efc..
ownership of
b728e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcci..
/
0c334..
ownership of
67c2c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbAH..
/
29b9a..
ownership of
72b8e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaej..
/
30f18..
ownership of
c2589..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMMV..
/
d1550..
ownership of
a14cf..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGDZ..
/
90024..
ownership of
f0d13..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHRM..
/
e7d7c..
ownership of
a0ec1..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSqK..
/
63dc7..
ownership of
2f36a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMEva..
/
a5bb4..
ownership of
62a09..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYRc..
/
8fe54..
ownership of
7b8bf..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTmB..
/
0f7e5..
ownership of
77b59..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMH2Y..
/
83151..
ownership of
50730..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdau..
/
2c757..
ownership of
07fb9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMEo7..
/
d91e6..
ownership of
11d5d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMU4d..
/
99204..
ownership of
91964..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJ78..
/
ab8af..
ownership of
542d8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRSo..
/
5f00e..
ownership of
7241c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZHq..
/
957dc..
ownership of
019b9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRw7..
/
608b0..
ownership of
1832c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQkm..
/
b5edf..
ownership of
89e18..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVVk..
/
74c4d..
ownership of
dabcf..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcvU..
/
27398..
ownership of
47d33..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHYj..
/
52a86..
ownership of
0cc7e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVLs..
/
24856..
ownership of
ee406..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTy5..
/
c50b8..
ownership of
84bad..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNUV..
/
bb6e6..
ownership of
f451b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMP3D..
/
eeb6a..
ownership of
a9278..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVV2..
/
ae6b7..
ownership of
0aa0d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRSj..
/
8e1d8..
ownership of
924dd..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWF8..
/
c33cd..
ownership of
1df3b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTQf..
/
1609d..
ownership of
dc5ae..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTTs..
/
935e9..
ownership of
5af23..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNp4..
/
29ba5..
ownership of
5e60e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMW91..
/
4683c..
ownership of
82ec9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMrR..
/
ea2da..
ownership of
a3634..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKg5..
/
80669..
ownership of
7cf6a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbUy..
/
e5c81..
ownership of
2f86f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMvt..
/
fcb53..
ownership of
432e2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYhz..
/
37550..
ownership of
5e750..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMduA..
/
b2bb1..
ownership of
1f81f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUEx..
/
1249f..
ownership of
a8e2e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdyX..
/
3c07d..
ownership of
856b8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbhW..
/
0aabc..
ownership of
59f91..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTvX..
/
311fd..
ownership of
951e3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMT5a..
/
5147d..
ownership of
9ec26..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQyp..
/
5614a..
ownership of
112da..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMT6Y..
/
1dc08..
ownership of
6641d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaWo..
/
a3980..
ownership of
dfebf..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQdz..
/
0e2ff..
ownership of
8b073..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPYL..
/
8893d..
ownership of
47684..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TML87..
/
2d08a..
ownership of
2e85e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTCL..
/
f89b4..
ownership of
23ac9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHqw..
/
c11d7..
ownership of
e05e6..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKrk..
/
c1401..
ownership of
fdbc8..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSMY..
/
10bea..
ownership of
74e69..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXbP..
/
46254..
ownership of
e274d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJZg..
/
5b96c..
ownership of
3a365..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZHG..
/
0a2bc..
ownership of
848d4..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGCn..
/
806bc..
ownership of
1fa6d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNQA..
/
b8dbb..
ownership of
4983a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHV1..
/
0d713..
ownership of
f9341..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRmz..
/
91a20..
ownership of
41d0f..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMS5i..
/
e5381..
ownership of
3e00e..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPJr..
/
b2150..
ownership of
6e210..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMG4h..
/
e4668..
ownership of
2fe34..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRbz..
/
99f6e..
ownership of
78b50..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaPm..
/
2f3e7..
ownership of
a6e19..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKPK..
/
b502e..
ownership of
e794f..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMgi..
/
b3355..
ownership of
c9248..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcuR..
/
54b48..
ownership of
1c80e..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPLo..
/
4cebe..
ownership of
bf68c..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNWh..
/
d23e3..
ownership of
b7581..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTtX..
/
ebe7a..
ownership of
a3eb9..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGTV..
/
a5bf3..
ownership of
eab9f..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJ4A..
/
5090e..
ownership of
5e331..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQLg..
/
3a191..
ownership of
b182a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLpP..
/
f00ed..
ownership of
6b90c..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZCc..
/
231e6..
ownership of
b00c6..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcEm..
/
6f380..
ownership of
c4def..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGdw..
/
86069..
ownership of
88108..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUSb6..
/
ab8cf..
doc published by
PrGxv..
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
(proof)
Definition
c4def..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Definition
6b90c..
:=
λ x0 x1 .
prim0
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x2
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x3
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x3
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x2
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x2
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x3
x3
)
)
)
)
)
(
prim1
(
λ x2 .
x2
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(
prim0
x0
x1
)
Definition
5e331..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Definition
a3eb9..
:=
λ x0 x1 .
prim0
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x2
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x3
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x3
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x2
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x2
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x3
x2
)
)
)
)
)
(
prim1
(
λ x2 .
x2
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(
prim0
x0
x1
)
Definition
bf68c..
:=
λ x0 x1 .
prim0
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x2
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x3
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x3
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x2
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x2
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x3
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x3
)
)
)
)
)
(
prim1
(
λ x2 .
x2
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(
prim0
x0
x1
)
Definition
c9248..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Definition
a6e19..
:=
prim0
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Definition
2fe34..
:=
prim0
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Definition
3e00e..
:=
λ x0 x1 .
prim0
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x2
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x3
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x3
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x2
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x2
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x2
)
)
)
)
)
(
prim1
(
λ x2 .
x2
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(
prim0
x0
x1
)
Definition
f9341..
:=
λ x0 x1 .
prim0
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x2
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x3
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x3
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x2
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x3
x2
)
)
(
prim0
(
prim0
x2
x2
)
(
prim0
x2
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x3
x3
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x3
)
)
(
prim0
(
prim0
x2
x3
)
(
prim0
x3
x2
)
)
)
)
)
(
prim0
(
prim1
(
λ x2 .
prim1
(
λ x3 .
prim0
(
prim0
(
prim0
x3
x2
)
(
prim0
x2
x2
)
)
(
prim0
(
prim0
x3
x3
)
(
prim0
x2
x3
)
)
)
)
)
(
prim1
(
λ x2 .
x2
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(
prim0
x0
x1
)
Definition
1fa6d..
:=
prim0
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Definition
3a365..
:=
prim0
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Definition
False
:=
∀ x0 : ο .
x0
Known
92e6a..
:
∀ x0 :
ι → ι
.
∀ x1 x2 .
prim1
x0
=
prim0
x1
x2
⟶
False
Known
50787..
:
∀ x0 x1 x2 x3 .
prim0
x0
x1
=
prim0
x2
x3
⟶
x0
=
x2
Theorem
8b073..
:
∀ x0 x1 x2 .
prim0
(
prim1
(
λ x4 .
prim1
(
λ x5 .
prim0
(
prim0
(
prim0
x5
x4
)
(
prim0
x4
x5
)
)
(
prim0
(
prim0
x5
x5
)
(
prim0
x4
x4
)
)
)
)
)
x0
=
prim0
(
prim0
(
prim1
(
λ x4 .
prim1
(
λ x5 .
prim0
(
prim0
(
prim0
x5
x4
)
(
prim0
x4
x5
)
)
(
prim0
(
prim0
x5
x5
)
(
prim0
x4
x4
)
)
)
)
)
x1
)
x2
⟶
∀ x3 : ο .
x3
(proof)
Theorem
6641d..
:
∀ x0 x1 x2 .
prim0
(
prim0
(
prim1
(
λ x4 .
prim1
(
λ x5 .
prim0
(
prim0
(
prim0
x5
x4
)
(
prim0
x4
x5
)
)
(
prim0
(
prim0
x5
x5
)
(
prim0
x4
x4
)
)
)
)
)
x1
)
x2
=
prim0
(
prim1
(
λ x4 .
prim1
(
λ x5 .
prim0
(
prim0
(
prim0
x5
x4
)
(
prim0
x4
x5
)
)
(
prim0
(
prim0
x5
x5
)
(
prim0
x4
x4
)
)
)
)
)
x0
⟶
∀ x3 : ο .
x3
(proof)
Theorem
9ec26..
:
∀ x0 x1 .
5e331..
=
a3eb9..
x0
x1
⟶
∀ x2 : ο .
x2
(proof)
Theorem
59f91..
:
∀ x0 x1 .
5e331..
=
bf68c..
x0
x1
⟶
∀ x2 : ο .
x2
(proof)
Param
236c6..
:
ι
Known
f558c..
:
∀ x0 x1 .
236c6..
=
prim0
x0
x1
⟶
∀ x2 : ο .
x2
Known
93754..
:
∀ x0 x1 x2 x3 .
prim0
x0
x1
=
prim0
x2
x3
⟶
x1
=
x3
Known
db6fe..
:
∀ x0 x1 :
ι → ι
.
∀ x2 .
prim1
x0
=
prim1
x1
⟶
x0
x2
=
x1
x2
Theorem
a8e2e..
:
∀ x0 x1 x2 x3 .
a3eb9..
x0
x1
=
bf68c..
x2
x3
⟶
∀ x4 : ο .
x4
(proof)
Known
128d8..
:
∀ x0 x1 x2 x3 .
prim0
x0
x1
=
prim0
x2
x3
⟶
∀ x4 : ο .
(
x0
=
x2
⟶
x1
=
x3
⟶
x4
)
⟶
x4
Theorem
5e750..
:
∀ x0 x1 x2 x3 .
a3eb9..
x0
x1
=
a3eb9..
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
(proof)
Theorem
2f86f..
:
∀ x0 x1 x2 x3 .
bf68c..
x0
x1
=
bf68c..
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
(proof)
Theorem
a3634..
:
∀ x0 x1 .
c4def..
=
6b90c..
x0
x1
⟶
∀ x2 : ο .
x2
(proof)
Known
0286c..
:
∀ x0 x1 .
prim0
x0
x1
=
236c6..
⟶
False
Theorem
5e60e..
:
c4def..
=
c9248..
⟶
∀ x0 : ο .
x0
(proof)
Theorem
dc5ae..
:
∀ x0 x1 .
6b90c..
x0
x1
=
c9248..
⟶
∀ x2 : ο .
x2
(proof)
Theorem
924dd..
:
∀ x0 .
c4def..
=
a6e19..
x0
⟶
∀ x1 : ο .
x1
(proof)
Theorem
a9278..
:
∀ x0 x1 x2 .
6b90c..
x0
x1
=
a6e19..
x2
⟶
∀ x3 : ο .
x3
(proof)
Theorem
84bad..
:
∀ x0 .
c9248..
=
a6e19..
x0
⟶
∀ x1 : ο .
x1
(proof)
Theorem
0cc7e..
:
∀ x0 .
c4def..
=
2fe34..
x0
⟶
∀ x1 : ο .
x1
(proof)
Theorem
dabcf..
:
∀ x0 x1 x2 .
6b90c..
x0
x1
=
2fe34..
x2
⟶
∀ x3 : ο .
x3
(proof)
Theorem
1832c..
:
∀ x0 .
c9248..
=
2fe34..
x0
⟶
∀ x1 : ο .
x1
(proof)
Theorem
7241c..
:
∀ x0 x1 .
a6e19..
x0
=
2fe34..
x1
⟶
∀ x2 : ο .
x2
(proof)
Theorem
91964..
:
∀ x0 x1 .
c4def..
=
3e00e..
x0
x1
⟶
∀ x2 : ο .
x2
(proof)
Theorem
07fb9..
:
∀ x0 x1 x2 x3 .
6b90c..
x0
x1
=
3e00e..
x2
x3
⟶
∀ x4 : ο .
x4
(proof)
Theorem
77b59..
:
∀ x0 x1 .
c9248..
=
3e00e..
x0
x1
⟶
∀ x2 : ο .
x2
(proof)
Theorem
62a09..
:
∀ x0 x1 x2 .
a6e19..
x0
=
3e00e..
x1
x2
⟶
∀ x3 : ο .
x3
(proof)
Theorem
a0ec1..
:
∀ x0 x1 x2 .
2fe34..
x0
=
3e00e..
x1
x2
⟶
∀ x3 : ο .
x3
(proof)
Theorem
a14cf..
:
∀ x0 x1 .
c4def..
=
f9341..
x0
x1
⟶
∀ x2 : ο .
x2
(proof)
Theorem
72b8e..
:
∀ x0 x1 x2 x3 .
6b90c..
x0
x1
=
f9341..
x2
x3
⟶
∀ x4 : ο .
x4
(proof)
Theorem
b728e..
:
∀ x0 x1 .
c9248..
=
f9341..
x0
x1
⟶
∀ x2 : ο .
x2
(proof)
Theorem
cec81..
:
∀ x0 x1 x2 .
a6e19..
x0
=
f9341..
x1
x2
⟶
∀ x3 : ο .
x3
(proof)
Theorem
becdb..
:
∀ x0 x1 x2 .
2fe34..
x0
=
f9341..
x1
x2
⟶
∀ x3 : ο .
x3
(proof)
Theorem
a1a1b..
:
∀ x0 x1 x2 x3 .
3e00e..
x0
x1
=
f9341..
x2
x3
⟶
∀ x4 : ο .
x4
(proof)
Theorem
b8b08..
:
∀ x0 .
c4def..
=
1fa6d..
x0
⟶
∀ x1 : ο .
x1
(proof)
Theorem
0a32f..
:
∀ x0 x1 x2 .
6b90c..
x0
x1
=
1fa6d..
x2
⟶
∀ x3 : ο .
x3
(proof)
Theorem
0482c..
:
∀ x0 .
c9248..
=
1fa6d..
x0
⟶
∀ x1 : ο .
x1
(proof)
Theorem
4bdb9..
:
∀ x0 x1 .
a6e19..
x0
=
1fa6d..
x1
⟶
∀ x2 : ο .
x2
(proof)
Theorem
a5def..
:
∀ x0 x1 .
2fe34..
x0
=
1fa6d..
x1
⟶
∀ x2 : ο .
x2
(proof)
Theorem
54459..
:
∀ x0 x1 x2 .
3e00e..
x0
x1
=
1fa6d..
x2
⟶
∀ x3 : ο .
x3
(proof)
Theorem
38968..
:
∀ x0 x1 x2 .
f9341..
x0
x1
=
1fa6d..
x2
⟶
∀ x3 : ο .
x3
(proof)
Theorem
f9749..
:
∀ x0 .
c4def..
=
3a365..
x0
⟶
∀ x1 : ο .
x1
(proof)
Theorem
ff84b..
:
∀ x0 x1 x2 .
6b90c..
x0
x1
=
3a365..
x2
⟶
∀ x3 : ο .
x3
(proof)
Theorem
36b24..
:
∀ x0 .
c9248..
=
3a365..
x0
⟶
∀ x1 : ο .
x1
(proof)
Theorem
62476..
:
∀ x0 x1 .
a6e19..
x0
=
3a365..
x1
⟶
∀ x2 : ο .
x2
(proof)
Theorem
cdd8a..
:
∀ x0 x1 .
2fe34..
x0
=
3a365..
x1
⟶
∀ x2 : ο .
x2
(proof)
Theorem
fb77a..
:
∀ x0 x1 x2 .
3e00e..
x0
x1
=
3a365..
x2
⟶
∀ x3 : ο .
x3
(proof)
Theorem
6774e..
:
∀ x0 x1 x2 .
f9341..
x0
x1
=
3a365..
x2
⟶
∀ x3 : ο .
x3
(proof)
Theorem
9f429..
:
∀ x0 x1 .
1fa6d..
x0
=
3a365..
x1
⟶
∀ x2 : ο .
x2
(proof)
Theorem
ffc37..
:
∀ x0 x1 x2 x3 .
6b90c..
x0
x1
=
6b90c..
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
(proof)
Theorem
ffefa..
:
∀ x0 x1 x2 x3 .
6b90c..
x0
x1
=
6b90c..
x2
x3
⟶
x0
=
x2
(proof)
Theorem
af84e..
:
∀ x0 x1 x2 x3 .
6b90c..
x0
x1
=
6b90c..
x2
x3
⟶
x1
=
x3
(proof)
Theorem
84af1..
:
∀ x0 x1 .
a6e19..
x0
=
a6e19..
x1
⟶
x0
=
x1
(proof)
Theorem
2eb6f..
:
∀ x0 x1 .
2fe34..
x0
=
2fe34..
x1
⟶
x0
=
x1
(proof)
Theorem
42e43..
:
∀ x0 x1 x2 x3 .
3e00e..
x0
x1
=
3e00e..
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
(proof)
Theorem
ee7eb..
:
∀ x0 x1 x2 x3 .
3e00e..
x0
x1
=
3e00e..
x2
x3
⟶
x0
=
x2
(proof)
Theorem
67376..
:
∀ x0 x1 x2 x3 .
3e00e..
x0
x1
=
3e00e..
x2
x3
⟶
x1
=
x3
(proof)
Theorem
063ac..
:
∀ x0 x1 x2 x3 .
f9341..
x0
x1
=
f9341..
x2
x3
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
(proof)
Theorem
9efcd..
:
∀ x0 x1 x2 x3 .
f9341..
x0
x1
=
f9341..
x2
x3
⟶
x0
=
x2
(proof)
Theorem
2b512..
:
∀ x0 x1 x2 x3 .
f9341..
x0
x1
=
f9341..
x2
x3
⟶
x1
=
x3
(proof)
Theorem
a1c68..
:
∀ x0 x1 .
1fa6d..
x0
=
1fa6d..
x1
⟶
x0
=
x1
(proof)
Theorem
f684d..
:
∀ x0 x1 .
3a365..
x0
=
3a365..
x1
⟶
x0
=
x1
(proof)
Definition
74e69..
:=
λ x0 .
∀ x1 :
ι → ο
.
x1
5e331..
⟶
(
∀ x2 x3 .
x1
x2
⟶
x1
x3
⟶
x1
(
a3eb9..
x2
x3
)
)
⟶
(
∀ x2 x3 .
x1
x2
⟶
x1
x3
⟶
x1
(
bf68c..
x2
x3
)
)
⟶
x1
x0
Theorem
e5778..
:
74e69..
5e331..
(proof)
Theorem
c4252..
:
∀ x0 x1 .
74e69..
x0
⟶
74e69..
x1
⟶
74e69..
(
a3eb9..
x0
x1
)
(proof)
Theorem
fbf8c..
:
∀ x0 x1 .
74e69..
x0
⟶
74e69..
x1
⟶
74e69..
(
bf68c..
x0
x1
)
(proof)
Theorem
facf7..
:
∀ x0 :
ι → ο
.
x0
5e331..
⟶
(
∀ x1 x2 .
74e69..
x1
⟶
x0
x1
⟶
74e69..
x2
⟶
x0
x2
⟶
x0
(
a3eb9..
x1
x2
)
)
⟶
(
∀ x1 x2 .
74e69..
x1
⟶
x0
x1
⟶
74e69..
x2
⟶
x0
x2
⟶
x0
(
bf68c..
x1
x2
)
)
⟶
∀ x1 .
74e69..
x1
⟶
x0
x1
(proof)
Known
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
75262..
:
∀ x0 x1 .
74e69..
(
a3eb9..
x0
x1
)
⟶
and
(
74e69..
x0
)
(
74e69..
x1
)
(proof)
Theorem
826e0..
:
∀ x0 x1 .
74e69..
(
bf68c..
x0
x1
)
⟶
and
(
74e69..
x0
)
(
74e69..
x1
)
(proof)
Definition
e05e6..
:=
λ x0 .
∀ x1 :
ι → ο
.
x1
c4def..
⟶
(
∀ x2 x3 .
x1
x2
⟶
x1
x3
⟶
x1
(
6b90c..
x2
x3
)
)
⟶
x1
c9248..
⟶
(
∀ x2 .
x1
x2
⟶
x1
(
a6e19..
x2
)
)
⟶
(
∀ x2 .
x1
x2
⟶
x1
(
2fe34..
x2
)
)
⟶
(
∀ x2 x3 .
x1
x2
⟶
x1
x3
⟶
x1
(
3e00e..
x2
x3
)
)
⟶
(
∀ x2 x3 .
x1
x2
⟶
x1
x3
⟶
x1
(
f9341..
x2
x3
)
)
⟶
(
∀ x2 .
x1
x2
⟶
x1
(
1fa6d..
x2
)
)
⟶
(
∀ x2 .
x1
x2
⟶
x1
(
3a365..
x2
)
)
⟶
x1
x0
Theorem
b24e2..
:
e05e6..
c4def..
(proof)
Theorem
05df6..
:
∀ x0 x1 .
e05e6..
x0
⟶
e05e6..
x1
⟶
e05e6..
(
6b90c..
x0
x1
)
(proof)
Theorem
9dc64..
:
e05e6..
c9248..
(proof)
Theorem
82f14..
:
∀ x0 .
e05e6..
x0
⟶
e05e6..
(
a6e19..
x0
)
(proof)
Theorem
6d5ea..
:
∀ x0 .
e05e6..
x0
⟶
e05e6..
(
2fe34..
x0
)
(proof)
Theorem
1a774..
:
∀ x0 x1 .
e05e6..
x0
⟶
e05e6..
x1
⟶
e05e6..
(
3e00e..
x0
x1
)
(proof)
Theorem
6891d..
:
∀ x0 x1 .
e05e6..
x0
⟶
e05e6..
x1
⟶
e05e6..
(
f9341..
x0
x1
)
(proof)
Theorem
96df8..
:
∀ x0 .
e05e6..
x0
⟶
e05e6..
(
1fa6d..
x0
)
(proof)
Theorem
b6c01..
:
∀ x0 .
e05e6..
x0
⟶
e05e6..
(
3a365..
x0
)
(proof)