∀ x0 x1 x2 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . Church13_p x0 ⟶ Church13_p x1 ⟶ Church13_p x2 ⟶ (((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) = λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x15) ⟶ ∀ x3 : ο . x3) ⟶ ((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) = x0 ⟶ ∀ x3 : ο . x3) ⟶ ((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) = x1 ⟶ ∀ x3 : ο . x3) ⟶ ((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) = x2 ⟶ ∀ x3 : ο . x3) ⟶ ((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x15) = x0 ⟶ ∀ x3 : ο . x3) ⟶ ((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x15) = x1 ⟶ ∀ x3 : ο . x3) ⟶ ((λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x15) = x2 ⟶ ∀ x3 : ο . x3) ⟶ (x0 = x1 ⟶ ∀ x3 : ο . x3) ⟶ (x0 = x2 ⟶ ∀ x3 : ο . x3) ⟶ (x1 = x2 ⟶ ∀ x3 : ο . x3) ⟶ (TwoRamseyGraph_3_5_Church13 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x15) = λ x4 x5 . x5) ⟶ (TwoRamseyGraph_3_5_Church13 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) x0 = λ x4 x5 . x5) ⟶ (TwoRamseyGraph_3_5_Church13 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) x1 = λ x4 x5 . x5) ⟶ (TwoRamseyGraph_3_5_Church13 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x4) x2 = λ x4 x5 . x5) ⟶ (TwoRamseyGraph_3_5_Church13 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x15) x0 = λ x4 x5 . x5) ⟶ (TwoRamseyGraph_3_5_Church13 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x15) x1 = λ x4 x5 . x5) ⟶ (TwoRamseyGraph_3_5_Church13 (λ x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 . x15) x2 = λ x4 x5 . x5) ⟶ (TwoRamseyGraph_3_5_Church13 x0 x1 = λ x4 x5 . x5) ⟶ (TwoRamseyGraph_3_5_Church13 x0 x2 = λ x4 x5 . x5) ⟶ (TwoRamseyGraph_3_5_Church13 x1 x2 = λ x4 x5 . x5) ⟶ False |
|