Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCit..
/
4cb66..
PUQaz..
/
59abc..
vout
PrCit..
/
d9c14..
3.89 bars
TMR86..
/
6c79a..
ownership of
8a908..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMUiz..
/
a1b84..
ownership of
d2a85..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMNYy..
/
842be..
ownership of
68855..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMZyE..
/
354db..
ownership of
a403d..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMRSk..
/
33001..
ownership of
82836..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMZqf..
/
dfe1f..
ownership of
319dc..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMFEm..
/
33a7e..
ownership of
eb388..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMGuB..
/
7ee4c..
ownership of
756ab..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMWyh..
/
3ad3c..
ownership of
23d19..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMVsB..
/
b5dda..
ownership of
4fc63..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMaY3..
/
38c9e..
ownership of
9fceb..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMWJk..
/
cef52..
ownership of
a5386..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMG8c..
/
2aa33..
ownership of
e1908..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMJ4u..
/
359d0..
ownership of
00d76..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMYkB..
/
997d7..
ownership of
d70a5..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMPSP..
/
c4400..
ownership of
dd183..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMRTN..
/
2dcf2..
ownership of
3f745..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMKEw..
/
d079c..
ownership of
5c821..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMcki..
/
80fec..
ownership of
d5d16..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMKDJ..
/
b280e..
ownership of
9e26c..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMVTT..
/
c280d..
ownership of
0ddae..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMXVN..
/
120fa..
ownership of
dcc11..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMTwX..
/
daced..
ownership of
abdca..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMPwj..
/
0e3d2..
ownership of
6dd97..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMTz9..
/
54d2b..
ownership of
80db2..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMNQZ..
/
53e74..
ownership of
e6bfc..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMcWP..
/
ce1be..
ownership of
42af1..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMMbW..
/
bca50..
ownership of
189d3..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMHsE..
/
ed5c4..
ownership of
96f77..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMUZm..
/
d6fc9..
ownership of
2901e..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMXhd..
/
c6c68..
ownership of
998ca..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMY5e..
/
e0d6e..
ownership of
dcbea..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMW1g..
/
137e1..
ownership of
1f34f..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMS6L..
/
0fae2..
ownership of
663ee..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMdbs..
/
2f997..
ownership of
31e20..
as obj with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMJa8..
/
97441..
ownership of
71d80..
as obj with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMHA3..
/
706d1..
ownership of
f14ce..
as obj with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMK4R..
/
09a55..
ownership of
c6e09..
as obj with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMbGd..
/
09fd5..
ownership of
4b3fa..
as obj with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMJ2A..
/
70cc0..
ownership of
a5895..
as obj with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMcsZ..
/
e48ef..
ownership of
f1360..
as obj with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMMjd..
/
6c7de..
ownership of
2dbca..
as obj with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMLjb..
/
c9d9b..
ownership of
15fbd..
as obj with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMNu4..
/
dcd8f..
ownership of
73f91..
as obj with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
PUdHT..
/
977c5..
doc published by
Pr4zB..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
15fbd..
:=
λ x0 :
ι →
ι → ο
.
λ x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x1
⟶
x0
(
x2
x3
)
(
x2
(
ordsucc
x3
)
)
)
(
x0
(
x2
x1
)
(
x2
0
)
)
Param
bij
bij
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Definition
f1360..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 .
∀ x3 : ο .
(
∀ x4 :
ι → ι
.
and
(
bij
(
ordsucc
x1
)
x2
x4
)
(
15fbd..
x0
x1
x4
)
⟶
x3
)
⟶
x3
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Definition
atleastp
atleastp
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
inj
x0
x1
x3
⟶
x2
)
⟶
x2
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Param
equip
equip
:
ι
→
ι
→
ο
Definition
u4
:=
ordsucc
u3
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
In_0_4
In_0_4
:
0
∈
4
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Param
nat_p
nat_p
:
ι
→
ο
Known
4fb58..
Pigeonhole_not_atleastp_ordsucc
:
∀ x0 .
nat_p
x0
⟶
not
(
atleastp
(
ordsucc
x0
)
x0
)
Known
nat_4
nat_4
:
nat_p
4
Definition
u5
:=
ordsucc
u4
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Known
368c2..
:
∀ x0 x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
(
x1
=
x2
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x1
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x4
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
atleastp
u5
x0
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
SetAdjoin
SetAdjoin
:=
λ x0 x1 .
binunion
x0
(
Sing
x1
)
Param
UPair
UPair
:
ι
→
ι
→
ι
Known
aa241..
:
∀ x0 x1 x2 .
∀ x3 :
ι → ο
.
x3
x0
⟶
x3
x1
⟶
x3
x2
⟶
∀ x4 .
x4
∈
SetAdjoin
(
UPair
x0
x1
)
x2
⟶
x3
x4
Known
5d098..
:
∀ x0 x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
(
x1
=
x2
⟶
∀ x4 : ο .
x4
)
⟶
(
x1
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
atleastp
u3
x0
Known
6be8c..
:
∀ x0 x1 x2 .
x0
∈
SetAdjoin
(
UPair
x0
x1
)
x2
Known
535ce..
:
∀ x0 x1 x2 .
x1
∈
SetAdjoin
(
UPair
x0
x1
)
x2
Known
f4e2f..
:
∀ x0 x1 x2 .
x2
∈
SetAdjoin
(
UPair
x0
x1
)
x2
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Param
ap
ap
:
ι
→
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
cases_4
cases_4
:
∀ x0 .
x0
∈
4
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
3
⟶
x1
x0
Known
tuple_4_0_eq
tuple_4_0_eq
:
∀ x0 x1 x2 x3 .
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
0
=
x0
Known
tuple_4_1_eq
tuple_4_1_eq
:
∀ x0 x1 x2 x3 .
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
1
=
x1
Known
tuple_4_2_eq
tuple_4_2_eq
:
∀ x0 x1 x2 x3 .
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
2
=
x2
Known
tuple_4_3_eq
tuple_4_3_eq
:
∀ x0 x1 x2 x3 .
ap
(
lam
4
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
x1
(
If_i
(
x5
=
2
)
x2
x3
)
)
)
)
3
=
x3
Known
bijI
bijI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
bij
x0
x1
x2
Known
nat_3
nat_3
:
nat_p
3
Known
13005..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
atleastp
x0
(
prim5
x0
x1
)
Param
setminus
setminus
:
ι
→
ι
→
ι
Known
Subq_atleastp
Subq_atleastp
:
∀ x0 x1 .
x0
⊆
x1
⟶
atleastp
x0
x1
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
In_1_4
In_1_4
:
1
∈
4
Known
In_2_4
In_2_4
:
2
∈
4
Known
In_3_4
In_3_4
:
3
∈
4
Known
7f437..
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
atleastp
x0
(
ordsucc
x1
)
⟶
atleastp
(
setminus
x0
(
Sing
x2
)
)
x1
Known
cases_3
cases_3
:
∀ x0 .
x0
∈
3
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
2
⟶
x1
x0
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Known
Subq_tra
Subq_tra
:
∀ x0 x1 x2 .
x0
⊆
x1
⟶
x1
⊆
x2
⟶
x0
⊆
x2
Known
setminus_Subq
setminus_Subq
:
∀ x0 x1 .
setminus
x0
x1
⊆
x0
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
9c223..
equip_ordsucc_remove1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
equip
x0
(
ordsucc
x1
)
⟶
equip
(
setminus
x0
(
Sing
x2
)
)
x1
Known
bijE
bijE
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
∀ x3 : ο .
(
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
∈
x1
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x2
x4
=
x2
x5
⟶
x4
=
x5
)
⟶
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
x2
x6
=
x4
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
PowerI
PowerI
:
∀ x0 x1 .
x1
⊆
x0
⟶
x1
∈
prim4
x0
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
UPairE
UPairE
:
∀ x0 x1 x2 .
x0
∈
UPair
x1
x2
⟶
or
(
x0
=
x1
)
(
x0
=
x2
)
Known
ced33..
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
equip
(
UPair
x0
x1
)
u2
Known
UPairI1
UPairI1
:
∀ x0 x1 .
x0
∈
UPair
x0
x1
Known
UPairI2
UPairI2
:
∀ x0 x1 .
x1
∈
UPair
x0
x1
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Known
77ee8..
:
∀ x0 x1 x2 .
∀ x3 :
ι → ι
.
nat_p
x0
⟶
equip
x1
x0
⟶
equip
x2
x0
⟶
inj
x1
x2
x3
⟶
bij
x1
x2
x3
Known
8ac0e..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
ordsucc
x0
⟶
equip
x0
(
setminus
(
ordsucc
x0
)
(
Sing
x1
)
)
Known
da3b9..
:
∀ x0 .
equip
x0
u3
⟶
equip
{x1 ∈
prim4
x0
|
equip
x1
u2
}
u3
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Theorem
1f34f..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
∀ x2 .
x2
⊆
x0
⟶
equip
x2
u4
⟶
∀ x3 x4 :
ι → ι
.
(
∀ x5 .
x5
∈
u4
⟶
x3
x5
∈
x2
)
⟶
(
∀ x5 .
x5
∈
u4
⟶
x4
x5
∈
x2
)
⟶
(
∀ x5 .
x5
∈
u4
⟶
x3
x5
=
x4
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
∀ x5 .
x5
∈
u4
⟶
x1
(
x3
x5
)
(
x4
x5
)
)
⟶
(
∀ x5 .
x5
∈
u4
⟶
∀ x6 .
x6
∈
u4
⟶
x3
x5
=
x3
x6
⟶
x4
x5
=
x4
x6
⟶
x5
=
x6
)
⟶
(
∀ x5 .
x5
∈
u4
⟶
∀ x6 .
x6
∈
u4
⟶
x3
x5
=
x4
x6
⟶
x4
x5
=
x3
x6
⟶
x5
=
x6
)
⟶
f1360..
x1
u3
x2
(proof)
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Definition
DirGraphOutNeighbors
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
λ x2 .
{x3 ∈
x0
|
and
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
(
x1
x2
x3
)
}
Param
u18
:
ι
Definition
4b3fa..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 .
prim0
(
λ x3 .
x3
∈
binintersect
(
DirGraphOutNeighbors
u18
x0
x2
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
Param
u6
:
ι
Known
Eps_i_ex
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Known
52ae1..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
u18
⟶
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
⟶
not
(
x0
x1
x2
)
⟶
atleastp
u1
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x1
)
(
DirGraphOutNeighbors
u18
x0
x2
)
)
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
In_0_1
In_0_1
:
0
∈
1
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Theorem
998ca..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
⟶
4b3fa..
x0
x1
x2
∈
binintersect
(
DirGraphOutNeighbors
u18
x0
x2
)
(
DirGraphOutNeighbors
u18
x0
x1
)
(proof)
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
f5939..
:
∀ x0 .
equip
u1
x0
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
x0
)
(
x0
=
Sing
x2
)
⟶
x1
)
⟶
x1
Known
binintersectI
binintersectI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
x1
⟶
x2
∈
binintersect
x0
x1
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Theorem
96f77..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
{x3 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x3
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
and
(
4b3fa..
x0
x1
x2
∈
binintersect
(
DirGraphOutNeighbors
u18
x0
x2
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
(
∀ x3 .
x3
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
x0
x3
x2
⟶
x3
=
4b3fa..
x0
x1
x2
)
(proof)
Theorem
42af1..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
{x3 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x3
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
4b3fa..
x0
x1
x2
∈
binintersect
(
DirGraphOutNeighbors
u18
x0
x2
)
(
DirGraphOutNeighbors
u18
x0
x1
)
(proof)
Theorem
80db2..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
{x3 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x3
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
∀ x3 .
x3
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
x0
x3
x2
⟶
x3
=
4b3fa..
x0
x1
x2
(proof)
Known
binintersectE
binintersectE
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
and
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
97232..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
∀ x3 .
x3
∈
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
∀ x4 .
x4
∈
{x5 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x5
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
x0
x3
x2
⟶
x0
x4
x2
⟶
x3
=
x4
Known
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Known
binintersectE1
binintersectE1
:
∀ x0 x1 x2 .
x2
∈
binintersect
x0
x1
⟶
x2
∈
x0
Theorem
abdca..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
{x3 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x3
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
∀ x3 .
x3
∈
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
4b3fa..
x0
x1
x2
=
4b3fa..
x0
x1
x3
⟶
x2
=
x3
(proof)
Definition
f14ce..
:=
λ x0 :
ι →
ι → ο
.
λ x1 x2 .
prim0
(
λ x3 .
and
(
x3
∈
binintersect
(
DirGraphOutNeighbors
u18
x0
x2
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
(
x3
=
4b3fa..
x0
x1
x2
⟶
∀ x4 : ο .
x4
)
)
Known
feddd..
:
∀ x0 .
equip
u2
x0
⟶
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
x0
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
and
(
x2
=
x4
⟶
∀ x5 : ο .
x5
)
(
x0
=
UPair
x2
x4
)
)
⟶
x3
)
⟶
x3
)
⟶
x1
)
⟶
x1
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Theorem
0ddae..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
{x3 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x3
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
}
⟶
and
(
f14ce..
x0
x1
x2
∈
binintersect
(
DirGraphOutNeighbors
u18
x0
x2
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
(
f14ce..
x0
x1
x2
=
4b3fa..
x0
x1
x2
⟶
∀ x3 : ο .
x3
)
(proof)
Theorem
d5d16..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
{x3 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x3
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
}
⟶
f14ce..
x0
x1
x2
∈
binintersect
(
DirGraphOutNeighbors
u18
x0
x2
)
(
DirGraphOutNeighbors
u18
x0
x1
)
(proof)
Theorem
3f745..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
{x3 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x3
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
}
⟶
f14ce..
x0
x1
x2
=
4b3fa..
x0
x1
x2
⟶
∀ x3 : ο .
x3
(proof)
Param
inv
inv
:
ι
→
(
ι
→
ι
) →
ι
→
ι
Definition
31e20..
:=
λ x0 :
ι →
ι → ο
.
λ x1 .
inv
{x2 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x2
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
(
4b3fa..
x0
x1
)
Known
inj_linv
inj_linv
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
∀ x2 .
x2
∈
x0
⟶
inv
x0
x1
(
x1
x2
)
=
x2
Theorem
d70a5..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
{x3 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x3
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
31e20..
x0
x1
(
4b3fa..
x0
x1
x2
)
=
x2
(proof)
Known
cfabd..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
x2
∈
DirGraphOutNeighbors
x0
x1
x3
Theorem
e1908..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
∀ x3 .
x3
∈
setminus
(
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
)
(
DirGraphOutNeighbors
u18
x0
x2
)
⟶
4b3fa..
x0
x1
x3
∈
setminus
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x2
)
(proof)
Param
setsum
setsum
:
ι
→
ι
→
ι
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
893fe..
:
add_nat
4
1
=
5
Known
c88e0..
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
nat_p
x1
⟶
equip
x0
x2
⟶
equip
x1
x3
⟶
equip
(
add_nat
x0
x1
)
(
setsum
x2
x3
)
Known
nat_1
nat_1
:
nat_p
1
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Known
1fe14..
:
∀ x0 x1 x2 x3 .
atleastp
x0
x2
⟶
atleastp
x1
x3
⟶
(
∀ x4 .
x4
∈
x2
⟶
nIn
x4
x3
)
⟶
atleastp
(
setsum
x0
x1
)
(
binunion
x2
x3
)
Param
u8
:
ι
Known
51de2..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
and
(
equip
{x2 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x2
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
u4
)
(
equip
{x2 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x2
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
}
u8
)
Known
04353..
:
∀ x0 x1 .
x1
∈
x0
⟶
atleastp
u1
x0
Known
binunion_Subq_min
binunion_Subq_min
:
∀ x0 x1 x2 .
x0
⊆
x2
⟶
x1
⊆
x2
⟶
binunion
x0
x1
⊆
x2
Known
6cd03..
:
∀ x0 x1 .
x1
∈
x0
⟶
Sing
x1
⊆
x0
Known
b4538..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
equip
(
DirGraphOutNeighbors
u18
x0
x1
)
u5
Theorem
9fceb..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
(
∀ x3 .
x3
∈
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
not
(
x0
x2
x3
)
)
⟶
∀ x3 .
x3
∈
setminus
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
}
(
DirGraphOutNeighbors
u18
x0
x2
)
⟶
31e20..
x0
x1
(
4b3fa..
x0
x1
x3
)
∈
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
(proof)
Theorem
23d19..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
∀ x3 .
x3
∈
setminus
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
}
(
DirGraphOutNeighbors
u18
x0
x2
)
⟶
f14ce..
x0
x1
x3
∈
setminus
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x2
)
(proof)
Theorem
eb388..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
(
∀ x3 .
x3
∈
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
not
(
x0
x2
x3
)
)
⟶
∀ x3 .
x3
∈
setminus
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
}
(
DirGraphOutNeighbors
u18
x0
x2
)
⟶
31e20..
x0
x1
(
f14ce..
x0
x1
x3
)
∈
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
(proof)
Known
d03c6..
:
∀ x0 .
atleastp
u4
x0
⟶
∀ x1 : ο .
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
(
x2
=
x3
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x2
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x4
⟶
∀ x6 : ο .
x6
)
⟶
(
x3
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
(
x4
=
x5
⟶
∀ x6 : ο .
x6
)
⟶
x1
)
⟶
x1
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
d8272..
:
∀ x0 x1 x2 x3 x4 .
x0
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
Known
cc191..
:
∀ x0 x1 x2 x3 x4 .
x1
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
Known
181b3..
:
∀ x0 x1 x2 x3 x4 .
x2
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
Known
c9ec0..
:
∀ x0 x1 x2 x3 x4 .
x3
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
Known
6143a..
:
∀ x0 x1 x2 x3 x4 .
x4
∈
SetAdjoin
(
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
)
x4
Known
69a9c..
:
∀ x0 x1 x2 x3 .
x0
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Known
e588e..
:
∀ x0 x1 x2 x3 .
x1
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Known
14338..
:
∀ x0 x1 x2 x3 .
x2
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Known
b253c..
:
∀ x0 x1 x2 x3 .
x3
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Known
8698a..
:
∀ x0 x1 x2 x3 .
∀ x4 :
ι → ο
.
x4
x0
⟶
x4
x1
⟶
x4
x2
⟶
x4
x3
⟶
∀ x5 .
x5
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
⟶
x4
x5
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
82836..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
(
∀ x3 .
x3
∈
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
not
(
x0
x2
x3
)
)
⟶
∀ x3 .
x3
∈
setminus
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x2
)
⟶
and
(
and
(
31e20..
x0
x1
x3
∈
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
)
(
binintersect
(
DirGraphOutNeighbors
u18
x0
(
31e20..
x0
x1
x3
)
)
(
DirGraphOutNeighbors
u18
x0
x1
)
=
Sing
x3
)
)
(
4b3fa..
x0
x1
(
31e20..
x0
x1
x3
)
=
x3
)
(proof)
Theorem
68855..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
(
∀ x3 .
x3
∈
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
not
(
x0
x2
x3
)
)
⟶
∀ x3 .
x3
∈
setminus
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
}
(
DirGraphOutNeighbors
u18
x0
x2
)
⟶
31e20..
x0
x1
(
4b3fa..
x0
x1
x3
)
=
31e20..
x0
x1
(
f14ce..
x0
x1
x3
)
⟶
∀ x4 : ο .
x4
(proof)
Known
Sep_Subq
Sep_Subq
:
∀ x0 .
∀ x1 :
ι → ο
.
Sep
x0
x1
⊆
x0
Known
008c0..
:
add_nat
u3
u3
=
u6
Known
185e6..
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
equip
x0
(
ordsucc
(
ordsucc
x1
)
)
⟶
equip
(
setminus
x0
(
UPair
x2
x3
)
)
x1
Known
equip_tra
equip_tra
:
∀ x0 x1 x2 .
equip
x0
x1
⟶
equip
x1
x2
⟶
equip
x0
x2
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
7fc90..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
∀ x4 .
x4
∈
DirGraphOutNeighbors
x0
x1
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x1
x3
x4
)
Known
nat_2
nat_2
:
nat_p
2
Theorem
8a908..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 .
x2
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
(
∀ x3 .
x3
∈
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
not
(
x0
x2
x3
)
)
⟶
∀ x3 .
x3
∈
setminus
{x4 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x4
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
}
(
DirGraphOutNeighbors
u18
x0
x2
)
⟶
x0
(
31e20..
x0
x1
(
4b3fa..
x0
x1
x3
)
)
(
31e20..
x0
x1
(
f14ce..
x0
x1
x3
)
)
(proof)