Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCit../4cb66..
PUQaz../59abc..
vout
PrCit../d9c14.. 3.89 bars
TMR86../6c79a.. ownership of 8a908.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMUiz../a1b84.. ownership of d2a85.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMNYy../842be.. ownership of 68855.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZyE../354db.. ownership of a403d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMRSk../33001.. ownership of 82836.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZqf../dfe1f.. ownership of 319dc.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMFEm../33a7e.. ownership of eb388.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMGuB../7ee4c.. ownership of 756ab.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMWyh../3ad3c.. ownership of 23d19.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMVsB../b5dda.. ownership of 4fc63.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMaY3../38c9e.. ownership of 9fceb.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMWJk../cef52.. ownership of a5386.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMG8c../2aa33.. ownership of e1908.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJ4u../359d0.. ownership of 00d76.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMYkB../997d7.. ownership of d70a5.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMPSP../c4400.. ownership of dd183.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMRTN../2dcf2.. ownership of 3f745.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMKEw../d079c.. ownership of 5c821.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMcki../80fec.. ownership of d5d16.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMKDJ../b280e.. ownership of 9e26c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMVTT../c280d.. ownership of 0ddae.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMXVN../120fa.. ownership of dcc11.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMTwX../daced.. ownership of abdca.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMPwj../0e3d2.. ownership of 6dd97.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMTz9../54d2b.. ownership of 80db2.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMNQZ../53e74.. ownership of e6bfc.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMcWP../ce1be.. ownership of 42af1.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMMbW../bca50.. ownership of 189d3.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHsE../ed5c4.. ownership of 96f77.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMUZm../d6fc9.. ownership of 2901e.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMXhd../c6c68.. ownership of 998ca.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMY5e../e0d6e.. ownership of dcbea.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMW1g../137e1.. ownership of 1f34f.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMS6L../0fae2.. ownership of 663ee.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMdbs../2f997.. ownership of 31e20.. as obj with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJa8../97441.. ownership of 71d80.. as obj with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHA3../706d1.. ownership of f14ce.. as obj with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMK4R../09a55.. ownership of c6e09.. as obj with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMbGd../09fd5.. ownership of 4b3fa.. as obj with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJ2A../70cc0.. ownership of a5895.. as obj with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMcsZ../e48ef.. ownership of f1360.. as obj with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMMjd../6c7de.. ownership of 2dbca.. as obj with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLjb../c9d9b.. ownership of 15fbd.. as obj with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMNu4../dcd8f.. ownership of 73f91.. as obj with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUdHT../977c5.. doc published by Pr4zB..
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param ordsuccordsucc : ιι
Definition 15fbd.. := λ x0 : ι → ι → ο . λ x1 . λ x2 : ι → ι . and (∀ x3 . x3x1x0 (x2 x3) (x2 (ordsucc x3))) (x0 (x2 x1) (x2 0))
Param bijbij : ιι(ιι) → ο
Definition f1360.. := λ x0 : ι → ι → ο . λ x1 x2 . ∀ x3 : ο . (∀ x4 : ι → ι . and (bij (ordsucc x1) x2 x4) (15fbd.. x0 x1 x4)x3)x3
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Definition injinj := λ x0 x1 . λ x2 : ι → ι . and (∀ x3 . x3x0x2 x3x1) (∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)
Definition atleastpatleastp := λ x0 x1 . ∀ x2 : ο . (∀ x3 : ι → ι . inj x0 x1 x3x2)x2
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Param equipequip : ιιο
Definition u4 := ordsucc u3
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Known In_0_4In_0_4 : 04
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Param nat_pnat_p : ιο
Known 4fb58..Pigeonhole_not_atleastp_ordsucc : ∀ x0 . nat_p x0not (atleastp (ordsucc x0) x0)
Known nat_4nat_4 : nat_p 4
Definition u5 := ordsucc u4
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Known 368c2.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0(x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)(x1 = x5∀ x6 : ο . x6)(x2 = x5∀ x6 : ο . x6)(x3 = x5∀ x6 : ο . x6)(x4 = x5∀ x6 : ο . x6)atleastp u5 x0
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Param binunionbinunion : ιιι
Param SingSing : ιι
Definition SetAdjoinSetAdjoin := λ x0 x1 . binunion x0 (Sing x1)
Param UPairUPair : ιιι
Known aa241.. : ∀ x0 x1 x2 . ∀ x3 : ι → ο . x3 x0x3 x1x3 x2∀ x4 . x4SetAdjoin (UPair x0 x1) x2x3 x4
Known 5d098.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0(x1 = x2∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)atleastp u3 x0
Known 6be8c.. : ∀ x0 x1 x2 . x0SetAdjoin (UPair x0 x1) x2
Known 535ce.. : ∀ x0 x1 x2 . x1SetAdjoin (UPair x0 x1) x2
Known f4e2f.. : ∀ x0 x1 x2 . x2SetAdjoin (UPair x0 x1) x2
Known FalseEFalseE : False∀ x0 : ο . x0
Param apap : ιιι
Param lamSigma : ι(ιι) → ι
Param If_iIf_i : οιιι
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known cases_4cases_4 : ∀ x0 . x04∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 x0
Known tuple_4_0_eqtuple_4_0_eq : ∀ x0 x1 x2 x3 . ap (lam 4 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) x1 (If_i (x5 = 2) x2 x3)))) 0 = x0
Known tuple_4_1_eqtuple_4_1_eq : ∀ x0 x1 x2 x3 . ap (lam 4 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) x1 (If_i (x5 = 2) x2 x3)))) 1 = x1
Known tuple_4_2_eqtuple_4_2_eq : ∀ x0 x1 x2 x3 . ap (lam 4 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) x1 (If_i (x5 = 2) x2 x3)))) 2 = x2
Known tuple_4_3_eqtuple_4_3_eq : ∀ x0 x1 x2 x3 . ap (lam 4 (λ x5 . If_i (x5 = 0) x0 (If_i (x5 = 1) x1 (If_i (x5 = 2) x2 x3)))) 3 = x3
Known bijIbijI : ∀ x0 x1 . ∀ x2 : ι → ι . (∀ x3 . x3x0x2 x3x1)(∀ x3 . x3x0∀ x4 . x4x0x2 x3 = x2 x4x3 = x4)(∀ x3 . x3x1∀ x4 : ο . (∀ x5 . and (x5x0) (x2 x5 = x3)x4)x4)bij x0 x1 x2
Known nat_3nat_3 : nat_p 3
Known 13005.. : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 = x1 x3x2 = x3)atleastp x0 (prim5 x0 x1)
Param setminussetminus : ιιι
Known Subq_atleastpSubq_atleastp : ∀ x0 x1 . x0x1atleastp x0 x1
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Definition nInnIn := λ x0 x1 . not (x0x1)
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known In_1_4In_1_4 : 14
Known In_2_4In_2_4 : 24
Known In_3_4In_3_4 : 34
Known 7f437.. : ∀ x0 x1 x2 . x2x0atleastp x0 (ordsucc x1)atleastp (setminus x0 (Sing x2)) x1
Known cases_3cases_3 : ∀ x0 . x03∀ x1 : ι → ο . x1 0x1 1x1 2x1 x0
Param SepSep : ι(ιο) → ι
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1x0
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Known 9c223..equip_ordsucc_remove1 : ∀ x0 x1 x2 . x2x0equip x0 (ordsucc x1)equip (setminus x0 (Sing x2)) x1
Known bijEbijE : ∀ x0 x1 . ∀ x2 : ι → ι . bij x0 x1 x2∀ x3 : ο . ((∀ x4 . x4x0x2 x4x1)(∀ x4 . x4x0∀ x5 . x5x0x2 x4 = x2 x5x4 = x5)(∀ x4 . x4x1∀ x5 : ο . (∀ x6 . and (x6x0) (x2 x6 = x4)x5)x5)x3)x3
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known PowerIPowerI : ∀ x0 x1 . x1x0x1prim4 x0
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known UPairEUPairE : ∀ x0 x1 x2 . x0UPair x1 x2or (x0 = x1) (x0 = x2)
Known ced33.. : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)equip (UPair x0 x1) u2
Known UPairI1UPairI1 : ∀ x0 x1 . x0UPair x0 x1
Known UPairI2UPairI2 : ∀ x0 x1 . x1UPair x0 x1
Known setminusE1setminusE1 : ∀ x0 x1 x2 . x2setminus x0 x1x2x0
Known 77ee8.. : ∀ x0 x1 x2 . ∀ x3 : ι → ι . nat_p x0equip x1 x0equip x2 x0inj x1 x2 x3bij x1 x2 x3
Known 8ac0e.. : ∀ x0 . nat_p x0∀ x1 . x1ordsucc x0equip x0 (setminus (ordsucc x0) (Sing x1))
Known da3b9.. : ∀ x0 . equip x0 u3equip {x1 ∈ prim4 x0|equip x1 u2} u3
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known SingISingI : ∀ x0 . x0Sing x0
Theorem 1f34f.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)(∀ x2 . x2x0atleastp u3 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x1 x3 x4))∀ x2 . x2x0equip x2 u4∀ x3 x4 : ι → ι . (∀ x5 . x5u4x3 x5x2)(∀ x5 . x5u4x4 x5x2)(∀ x5 . x5u4x3 x5 = x4 x5∀ x6 : ο . x6)(∀ x5 . x5u4x1 (x3 x5) (x4 x5))(∀ x5 . x5u4∀ x6 . x6u4x3 x5 = x3 x6x4 x5 = x4 x6x5 = x6)(∀ x5 . x5u4∀ x6 . x6u4x3 x5 = x4 x6x4 x5 = x3 x6x5 = x6)f1360.. x1 u3 x2 (proof)
Param binintersectbinintersect : ιιι
Definition DirGraphOutNeighbors := λ x0 . λ x1 : ι → ι → ο . λ x2 . {x3 ∈ x0|and (x2 = x3∀ x4 : ο . x4) (x1 x2 x3)}
Param u18 : ι
Definition 4b3fa.. := λ x0 : ι → ι → ο . λ x1 x2 . prim0 (λ x3 . x3binintersect (DirGraphOutNeighbors u18 x0 x2) (DirGraphOutNeighbors u18 x0 x1))
Param u6 : ι
Known Eps_i_exEps_i_ex : ∀ x0 : ι → ο . (∀ x1 : ο . (∀ x2 . x0 x2x1)x1)x0 (prim0 x0)
Known 52ae1.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2u18(x1 = x2∀ x3 : ο . x3)not (x0 x1 x2)atleastp u1 (binintersect (DirGraphOutNeighbors u18 x0 x1) (DirGraphOutNeighbors u18 x0 x2))
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known In_0_1In_0_1 : 01
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Theorem 998ca.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))4b3fa.. x0 x1 x2binintersect (DirGraphOutNeighbors u18 x0 x2) (DirGraphOutNeighbors u18 x0 x1) (proof)
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known f5939.. : ∀ x0 . equip u1 x0∀ x1 : ο . (∀ x2 . and (x2x0) (x0 = Sing x2)x1)x1
Known binintersectIbinintersectI : ∀ x0 x1 x2 . x2x0x2x1x2binintersect x0 x1
Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x2x0
Known setminusE2setminusE2 : ∀ x0 x1 x2 . x2setminus x0 x1nIn x2 x1
Theorem 96f77.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2{x3 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x3) (DirGraphOutNeighbors u18 x0 x1)) u1}and (4b3fa.. x0 x1 x2binintersect (DirGraphOutNeighbors u18 x0 x2) (DirGraphOutNeighbors u18 x0 x1)) (∀ x3 . x3DirGraphOutNeighbors u18 x0 x1x0 x3 x2x3 = 4b3fa.. x0 x1 x2) (proof)
Theorem 42af1.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2{x3 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x3) (DirGraphOutNeighbors u18 x0 x1)) u1}4b3fa.. x0 x1 x2binintersect (DirGraphOutNeighbors u18 x0 x2) (DirGraphOutNeighbors u18 x0 x1) (proof)
Theorem 80db2.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2{x3 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x3) (DirGraphOutNeighbors u18 x0 x1)) u1}∀ x3 . x3DirGraphOutNeighbors u18 x0 x1x0 x3 x2x3 = 4b3fa.. x0 x1 x2 (proof)
Known binintersectEbinintersectE : ∀ x0 x1 x2 . x2binintersect x0 x1and (x2x0) (x2x1)
Known 97232.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2DirGraphOutNeighbors u18 x0 x1∀ x3 . x3{x4 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x4) (DirGraphOutNeighbors u18 x0 x1)) u1}∀ x4 . x4{x5 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x5) (DirGraphOutNeighbors u18 x0 x1)) u1}x0 x3 x2x0 x4 x2x3 = x4
Known SepE2SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x1 x2
Known binintersectE1binintersectE1 : ∀ x0 x1 x2 . x2binintersect x0 x1x2x0
Theorem abdca.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2{x3 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x3) (DirGraphOutNeighbors u18 x0 x1)) u1}∀ x3 . x3{x4 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x4) (DirGraphOutNeighbors u18 x0 x1)) u1}4b3fa.. x0 x1 x2 = 4b3fa.. x0 x1 x3x2 = x3 (proof)
Definition f14ce.. := λ x0 : ι → ι → ο . λ x1 x2 . prim0 (λ x3 . and (x3binintersect (DirGraphOutNeighbors u18 x0 x2) (DirGraphOutNeighbors u18 x0 x1)) (x3 = 4b3fa.. x0 x1 x2∀ x4 : ο . x4))
Known feddd.. : ∀ x0 . equip u2 x0∀ x1 : ο . (∀ x2 . and (x2x0) (∀ x3 : ο . (∀ x4 . and (x4x0) (and (x2 = x4∀ x5 : ο . x5) (x0 = UPair x2 x4))x3)x3)x1)x1
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Theorem 0ddae.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2{x3 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x3) (DirGraphOutNeighbors u18 x0 x1)) u2}and (f14ce.. x0 x1 x2binintersect (DirGraphOutNeighbors u18 x0 x2) (DirGraphOutNeighbors u18 x0 x1)) (f14ce.. x0 x1 x2 = 4b3fa.. x0 x1 x2∀ x3 : ο . x3) (proof)
Theorem d5d16.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2{x3 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x3) (DirGraphOutNeighbors u18 x0 x1)) u2}f14ce.. x0 x1 x2binintersect (DirGraphOutNeighbors u18 x0 x2) (DirGraphOutNeighbors u18 x0 x1) (proof)
Theorem 3f745.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2{x3 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x3) (DirGraphOutNeighbors u18 x0 x1)) u2}f14ce.. x0 x1 x2 = 4b3fa.. x0 x1 x2∀ x3 : ο . x3 (proof)
Param invinv : ι(ιι) → ιι
Definition 31e20.. := λ x0 : ι → ι → ο . λ x1 . inv {x2 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x2) (DirGraphOutNeighbors u18 x0 x1)) u1} (4b3fa.. x0 x1)
Known inj_linvinj_linv : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 = x1 x3x2 = x3)∀ x2 . x2x0inv x0 x1 (x1 x2) = x2
Theorem d70a5.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2{x3 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x3) (DirGraphOutNeighbors u18 x0 x1)) u1}31e20.. x0 x1 (4b3fa.. x0 x1 x2) = x2 (proof)
Known cfabd.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3DirGraphOutNeighbors x0 x1 x2x2DirGraphOutNeighbors x0 x1 x3
Theorem e1908.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2DirGraphOutNeighbors u18 x0 x1∀ x3 . x3setminus (setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))) (DirGraphOutNeighbors u18 x0 x2)4b3fa.. x0 x1 x3setminus (DirGraphOutNeighbors u18 x0 x1) (Sing x2) (proof)
Param setsumsetsum : ιιι
Param add_natadd_nat : ιιι
Known 893fe.. : add_nat 4 1 = 5
Known c88e0.. : ∀ x0 x1 x2 x3 . nat_p x0nat_p x1equip x0 x2equip x1 x3equip (add_nat x0 x1) (setsum x2 x3)
Known nat_1nat_1 : nat_p 1
Known equip_refequip_ref : ∀ x0 . equip x0 x0
Known 1fe14.. : ∀ x0 x1 x2 x3 . atleastp x0 x2atleastp x1 x3(∀ x4 . x4x2nIn x4 x3)atleastp (setsum x0 x1) (binunion x2 x3)
Param u8 : ι
Known 51de2.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18and (equip {x2 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x2) (DirGraphOutNeighbors u18 x0 x1)) u1} u4) (equip {x2 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x2) (DirGraphOutNeighbors u18 x0 x1)) u2} u8)
Known 04353.. : ∀ x0 x1 . x1x0atleastp u1 x0
Known binunion_Subq_minbinunion_Subq_min : ∀ x0 x1 x2 . x0x2x1x2binunion x0 x1x2
Known 6cd03.. : ∀ x0 x1 . x1x0Sing x1x0
Known b4538.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18equip (DirGraphOutNeighbors u18 x0 x1) u5
Theorem 9fceb.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2DirGraphOutNeighbors u18 x0 x1(∀ x3 . x3{x4 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x4) (DirGraphOutNeighbors u18 x0 x1)) u1}not (x0 x2 x3))∀ x3 . x3setminus {x4 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x4) (DirGraphOutNeighbors u18 x0 x1)) u2} (DirGraphOutNeighbors u18 x0 x2)31e20.. x0 x1 (4b3fa.. x0 x1 x3){x4 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x4) (DirGraphOutNeighbors u18 x0 x1)) u1} (proof)
Theorem 23d19.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2DirGraphOutNeighbors u18 x0 x1∀ x3 . x3setminus {x4 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x4) (DirGraphOutNeighbors u18 x0 x1)) u2} (DirGraphOutNeighbors u18 x0 x2)f14ce.. x0 x1 x3setminus (DirGraphOutNeighbors u18 x0 x1) (Sing x2) (proof)
Theorem eb388.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2DirGraphOutNeighbors u18 x0 x1(∀ x3 . x3{x4 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x4) (DirGraphOutNeighbors u18 x0 x1)) u1}not (x0 x2 x3))∀ x3 . x3setminus {x4 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x4) (DirGraphOutNeighbors u18 x0 x1)) u2} (DirGraphOutNeighbors u18 x0 x2)31e20.. x0 x1 (f14ce.. x0 x1 x3){x4 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x4) (DirGraphOutNeighbors u18 x0 x1)) u1} (proof)
Known d03c6.. : ∀ x0 . atleastp u4 x0∀ x1 : ο . (∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0(x2 = x3∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x2 = x5∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)(x3 = x5∀ x6 : ο . x6)(x4 = x5∀ x6 : ο . x6)x1)x1
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Known d8272.. : ∀ x0 x1 x2 x3 x4 . x0SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4
Known cc191.. : ∀ x0 x1 x2 x3 x4 . x1SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4
Known 181b3.. : ∀ x0 x1 x2 x3 x4 . x2SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4
Known c9ec0.. : ∀ x0 x1 x2 x3 x4 . x3SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4
Known 6143a.. : ∀ x0 x1 x2 x3 x4 . x4SetAdjoin (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3) x4
Known 69a9c.. : ∀ x0 x1 x2 x3 . x0SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3
Known e588e.. : ∀ x0 x1 x2 x3 . x1SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3
Known 14338.. : ∀ x0 x1 x2 x3 . x2SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3
Known b253c.. : ∀ x0 x1 x2 x3 . x3SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3
Known 8698a.. : ∀ x0 x1 x2 x3 . ∀ x4 : ι → ο . x4 x0x4 x1x4 x2x4 x3∀ x5 . x5SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3x4 x5
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Theorem 82836.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2DirGraphOutNeighbors u18 x0 x1(∀ x3 . x3{x4 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x4) (DirGraphOutNeighbors u18 x0 x1)) u1}not (x0 x2 x3))∀ x3 . x3setminus (DirGraphOutNeighbors u18 x0 x1) (Sing x2)and (and (31e20.. x0 x1 x3{x4 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x4) (DirGraphOutNeighbors u18 x0 x1)) u1}) (binintersect (DirGraphOutNeighbors u18 x0 (31e20.. x0 x1 x3)) (DirGraphOutNeighbors u18 x0 x1) = Sing x3)) (4b3fa.. x0 x1 (31e20.. x0 x1 x3) = x3) (proof)
Theorem 68855.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2DirGraphOutNeighbors u18 x0 x1(∀ x3 . x3{x4 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x4) (DirGraphOutNeighbors u18 x0 x1)) u1}not (x0 x2 x3))∀ x3 . x3setminus {x4 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x4) (DirGraphOutNeighbors u18 x0 x1)) u2} (DirGraphOutNeighbors u18 x0 x2)31e20.. x0 x1 (4b3fa.. x0 x1 x3) = 31e20.. x0 x1 (f14ce.. x0 x1 x3)∀ x4 : ο . x4 (proof)
Known Sep_SubqSep_Subq : ∀ x0 . ∀ x1 : ι → ο . Sep x0 x1x0
Known 008c0.. : add_nat u3 u3 = u6
Known 185e6.. : ∀ x0 x1 x2 . x2x0∀ x3 . x3x0(x2 = x3∀ x4 : ο . x4)equip x0 (ordsucc (ordsucc x1))equip (setminus x0 (UPair x2 x3)) x1
Known equip_traequip_tra : ∀ x0 x1 x2 . equip x0 x1equip x1 x2equip x0 x2
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known 7fc90.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)(∀ x2 . x2x0atleastp u3 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x1 x3 x4))∀ x2 . x2x0∀ x3 . x3DirGraphOutNeighbors x0 x1 x2∀ x4 . x4DirGraphOutNeighbors x0 x1 x2(x3 = x4∀ x5 : ο . x5)not (x1 x3 x4)
Known nat_2nat_2 : nat_p 2
Theorem 8a908.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2DirGraphOutNeighbors u18 x0 x1(∀ x3 . x3{x4 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x4) (DirGraphOutNeighbors u18 x0 x1)) u1}not (x0 x2 x3))∀ x3 . x3setminus {x4 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x4) (DirGraphOutNeighbors u18 x0 x1)) u2} (DirGraphOutNeighbors u18 x0 x2)x0 (31e20.. x0 x1 (4b3fa.. x0 x1 x3)) (31e20.. x0 x1 (f14ce.. x0 x1 x3)) (proof)