Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : (ι → (ι → ι) → ι)ι → ι → (ι → ι) → ι . ∀ x1 : (ι → ι)((ι → ι → ι) → ι) → ι . ∀ x2 : (ι → ι → (ι → ι → ι)(ι → ι) → ι)(ι → ι)((ι → ι) → ι) → ι . ∀ x3 : (ι → ι)((ι → ι)(ι → ι → ι) → ι)ι → ι . (∀ x4 : (ι → ι)ι → ι → ι → ι . ∀ x5 : (ι → ι → ι) → ι . ∀ x6 : (ι → ι → ι → ι) → ι . ∀ x7 : ((ι → ι → ι) → ι) → ι . x3 (λ x9 . 0) (λ x9 : ι → ι . λ x10 : ι → ι → ι . 0) (x7 (λ x9 : ι → ι → ι . setsum (x9 0 (x7 (λ x10 : ι → ι → ι . 0))) (x7 (λ x10 : ι → ι → ι . x2 (λ x11 x12 . λ x13 : ι → ι → ι . λ x14 : ι → ι . 0) (λ x11 . 0) (λ x11 : ι → ι . 0))))) = x7 (λ x9 : ι → ι → ι . setsum (Inj0 (x7 (λ x10 : ι → ι → ι . setsum 0 0))) (x3 (λ x10 . x7 (λ x11 : ι → ι → ι . 0)) (λ x10 : ι → ι . λ x11 : ι → ι → ι . 0) (x9 (Inj0 0) (setsum 0 0)))))(∀ x4 . ∀ x5 : ι → ι . ∀ x6 x7 . x3 (λ x9 . x7) (λ x9 : ι → ι . λ x10 : ι → ι → ι . x9 x6) x7 = x7)(∀ x4 : (((ι → ι)ι → ι)(ι → ι)ι → ι) → ι . ∀ x5 x6 x7 . x2 (λ x9 x10 . λ x11 : ι → ι → ι . λ x12 : ι → ι . 0) (λ x9 . x3 (λ x10 . 0) (λ x10 : ι → ι . λ x11 : ι → ι → ι . x9) x9) (λ x9 : ι → ι . setsum (x0 (λ x10 . λ x11 : ι → ι . x3 (λ x12 . x0 (λ x13 . λ x14 : ι → ι . 0) 0 0 (λ x13 . 0)) (λ x12 : ι → ι . λ x13 : ι → ι → ι . setsum 0 0) (Inj0 0)) (x0 (λ x10 . λ x11 : ι → ι . x3 (λ x12 . 0) (λ x12 : ι → ι . λ x13 : ι → ι → ι . 0) 0) 0 (Inj1 0) (λ x10 . Inj1 0)) (Inj1 (setsum 0 0)) (λ x10 . x10)) 0) = setsum x5 0)(∀ x4 . ∀ x5 : ι → ι → ι → ι → ι . ∀ x6 : (((ι → ι)ι → ι)ι → ι) → ι . ∀ x7 . x2 (λ x9 x10 . λ x11 : ι → ι → ι . λ x12 : ι → ι . 0) (λ x9 . x1 (λ x10 . x10) (λ x10 : ι → ι → ι . x10 0 (x10 (x1 (λ x11 . 0) (λ x11 : ι → ι → ι . 0)) x7))) (λ x9 : ι → ι . x9 (x1 (λ x10 . 0) (λ x10 : ι → ι → ι . x6 (λ x11 : (ι → ι)ι → ι . λ x12 . x1 (λ x13 . 0) (λ x13 : ι → ι → ι . 0))))) = setsum (x2 (λ x9 x10 . λ x11 : ι → ι → ι . λ x12 : ι → ι . setsum 0 (setsum (x11 0 0) x9)) (λ x9 . x6 (λ x10 : (ι → ι)ι → ι . λ x11 . setsum (x10 (λ x12 . 0) 0) 0)) (λ x9 : ι → ι . x7)) (x1 (λ x9 . setsum x7 0) (λ x9 : ι → ι → ι . x9 (x9 (Inj1 0) 0) (x1 (λ x10 . x7) (λ x10 : ι → ι → ι . x10 0 0)))))(∀ x4 : ι → ι . ∀ x5 . ∀ x6 : ((ι → ι) → ι)ι → (ι → ι)ι → ι . ∀ x7 . x1 (λ x9 . setsum 0 (Inj0 (x6 (λ x10 : ι → ι . x6 (λ x11 : ι → ι . 0) 0 (λ x11 . 0) 0) (Inj1 0) (λ x10 . x10) x7))) (λ x9 : ι → ι → ι . 0) = x4 (x6 (λ x9 : ι → ι . x9 (setsum 0 0)) x5 (λ x9 . x2 (λ x10 x11 . λ x12 : ι → ι → ι . λ x13 : ι → ι . 0) (λ x10 . x2 (λ x11 x12 . λ x13 : ι → ι → ι . λ x14 : ι → ι . 0) (λ x11 . x2 (λ x12 x13 . λ x14 : ι → ι → ι . λ x15 : ι → ι . 0) (λ x12 . 0) (λ x12 : ι → ι . 0)) (λ x11 : ι → ι . setsum 0 0)) (λ x10 : ι → ι . x0 (λ x11 . λ x12 : ι → ι . x0 (λ x13 . λ x14 : ι → ι . 0) 0 0 (λ x13 . 0)) 0 (x2 (λ x11 x12 . λ x13 : ι → ι → ι . λ x14 : ι → ι . 0) (λ x11 . 0) (λ x11 : ι → ι . 0)) (λ x11 . x9))) (x4 (Inj1 (setsum 0 0)))))(∀ x4 : ((ι → ι → ι)(ι → ι)ι → ι)(ι → ι) → ι . ∀ x5 : (ι → ι → ι → ι)((ι → ι) → ι)ι → ι . ∀ x6 : ι → ι . ∀ x7 : (((ι → ι)ι → ι) → ι) → ι . x1 (λ x9 . Inj0 0) (λ x9 : ι → ι → ι . Inj0 (Inj0 (x5 (λ x10 x11 x12 . x11) (λ x10 : ι → ι . x10 0) (Inj0 0)))) = Inj1 (Inj1 (x2 (λ x9 x10 . λ x11 : ι → ι → ι . λ x12 : ι → ι . x9) (λ x9 . Inj1 (x3 (λ x10 . 0) (λ x10 : ι → ι . λ x11 : ι → ι → ι . 0) 0)) (λ x9 : ι → ι . x6 (setsum 0 0)))))(∀ x4 . ∀ x5 : ((ι → ι) → ι) → ι . ∀ x6 x7 . x0 (λ x9 . λ x10 : ι → ι . x9) 0 0 (λ x9 . x6) = x6)(∀ x4 : ι → ι . ∀ x5 : ((ι → ι → ι) → ι)((ι → ι) → ι)ι → ι . ∀ x6 x7 . x0 (λ x9 . λ x10 : ι → ι . setsum (x2 (λ x11 x12 . λ x13 : ι → ι → ι . λ x14 : ι → ι . 0) x10 (λ x11 : ι → ι . x1 (λ x12 . x12) (λ x12 : ι → ι → ι . x2 (λ x13 x14 . λ x15 : ι → ι → ι . λ x16 : ι → ι . 0) (λ x13 . 0) (λ x13 : ι → ι . 0)))) 0) (Inj0 (x1 (λ x9 . x6) (λ x9 : ι → ι → ι . x0 (λ x10 . λ x11 : ι → ι . x7) (x3 (λ x10 . 0) (λ x10 : ι → ι . λ x11 : ι → ι → ι . 0) 0) (Inj0 0) (λ x10 . 0)))) 0 (λ x9 . setsum x9 x6) = setsum (x4 (x3 (λ x9 . 0) (λ x9 : ι → ι . λ x10 : ι → ι → ι . 0) (setsum 0 (x3 (λ x9 . 0) (λ x9 : ι → ι . λ x10 : ι → ι → ι . 0) 0)))) (x3 (λ x9 . 0) (λ x9 : ι → ι . λ x10 : ι → ι → ι . x1 (λ x11 . x1 (λ x12 . x11) (λ x12 : ι → ι → ι . x11)) (λ x11 : ι → ι → ι . x2 (λ x12 x13 . λ x14 : ι → ι → ι . λ x15 : ι → ι . x0 (λ x16 . λ x17 : ι → ι . 0) 0 0 (λ x16 . 0)) (λ x12 . x12) (λ x12 : ι → ι . 0))) 0))False
type
prop
theory
HF
name
-
proof
PUe4y..
Megalodon
-
proofgold address
TMMnT..
creator
11850 PrGVS../96dcf..
owner
11850 PrGVS../96dcf..
term root
e9b62..