| ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2 ∈ x1 ⟶ ∀ x3 . x3 ∈ x1 ⟶ ∀ x4 . x4 ∈ x1 ⟶ ∀ x5 . x5 ∈ x1 ⟶ ∀ x6 . x6 ∈ x1 ⟶ ∀ x7 . x7 ∈ x1 ⟶ ∀ x8 . x8 ∈ x1 ⟶ ∀ x9 . x9 ∈ x1 ⟶ ∀ x10 . x10 ∈ x1 ⟶ ∀ x11 . x11 ∈ x1 ⟶ ∀ x12 . x12 ∈ x1 ⟶ ∀ x13 . x13 ∈ x1 ⟶ ∀ x14 . x14 ∈ x1 ⟶ ∀ x15 . x15 ∈ x1 ⟶ ∀ x16 . x16 ∈ x1 ⟶ (∀ x17 . x17 ∈ x1 ⟶ ∀ x18 . x18 ∈ x1 ⟶ x0 x17 x18 ⟶ x0 x18 x17) ⟶ (x2 = x10 ⟶ ∀ x17 : ο . x17) ⟶ (x3 = x10 ⟶ ∀ x17 : ο . x17) ⟶ (x4 = x10 ⟶ ∀ x17 : ο . x17) ⟶ (x5 = x10 ⟶ ∀ x17 : ο . x17) ⟶ (x6 = x10 ⟶ ∀ x17 : ο . x17) ⟶ (x7 = x10 ⟶ ∀ x17 : ο . x17) ⟶ (x8 = x10 ⟶ ∀ x17 : ο . x17) ⟶ (x9 = x10 ⟶ ∀ x17 : ο . x17) ⟶ (x2 = x11 ⟶ ∀ x17 : ο . x17) ⟶ (x3 = x11 ⟶ ∀ x17 : ο . x17) ⟶ (x4 = x11 ⟶ ∀ x17 : ο . x17) ⟶ (x5 = x11 ⟶ ∀ x17 : ο . x17) ⟶ (x6 = x11 ⟶ ∀ x17 : ο . x17) ⟶ (x7 = x11 ⟶ ∀ x17 : ο . x17) ⟶ (x8 = x11 ⟶ ∀ x17 : ο . x17) ⟶ (x9 = x11 ⟶ ∀ x17 : ο . x17) ⟶ (x2 = x12 ⟶ ∀ x17 : ο . x17) ⟶ (x3 = x12 ⟶ ∀ x17 : ο . x17) ⟶ (x4 = x12 ⟶ ∀ x17 : ο . x17) ⟶ (x5 = x12 ⟶ ∀ x17 : ο . x17) ⟶ (x6 = x12 ⟶ ∀ x17 : ο . x17) ⟶ (x7 = x12 ⟶ ∀ x17 : ο . x17) ⟶ (x8 = x12 ⟶ ∀ x17 : ο . x17) ⟶ (x9 = x12 ⟶ ∀ x17 : ο . x17) ⟶ (x2 = x13 ⟶ ∀ x17 : ο . x17) ⟶ (x3 = x13 ⟶ ∀ x17 : ο . x17) ⟶ (x4 = x13 ⟶ ∀ x17 : ο . x17) ⟶ (x5 = x13 ⟶ ∀ x17 : ο . x17) ⟶ (x6 = x13 ⟶ ∀ x17 : ο . x17) ⟶ (x7 = x13 ⟶ ∀ x17 : ο . x17) ⟶ (x8 = x13 ⟶ ∀ x17 : ο . x17) ⟶ (x9 = x13 ⟶ ∀ x17 : ο . x17) ⟶ (x2 = x14 ⟶ ∀ x17 : ο . x17) ⟶ (x3 = x14 ⟶ ∀ x17 : ο . x17) ⟶ (x4 = x14 ⟶ ∀ x17 : ο . x17) ⟶ (x5 = x14 ⟶ ∀ x17 : ο . x17) ⟶ (x6 = x14 ⟶ ∀ x17 : ο . x17) ⟶ (x7 = x14 ⟶ ∀ x17 : ο . x17) ⟶ (x8 = x14 ⟶ ∀ x17 : ο . x17) ⟶ (x9 = x14 ⟶ ∀ x17 : ο . x17) ⟶ (x2 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x3 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x4 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x5 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x6 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x7 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x8 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x9 = x15 ⟶ ∀ x17 : ο . x17) ⟶ (x2 = x16 ⟶ ∀ x17 : ο . x17) ⟶ (x3 = x16 ⟶ ∀ x17 : ο . x17) ⟶ (x4 = x16 ⟶ ∀ x17 : ο . x17) ⟶ (x5 = x16 ⟶ ∀ x17 : ο . x17) ⟶ (x6 = x16 ⟶ ∀ x17 : ο . x17) ⟶ (x7 = x16 ⟶ ∀ x17 : ο . x17) ⟶ (x8 = x16 ⟶ ∀ x17 : ο . x17) ⟶ (x9 = x16 ⟶ ∀ x17 : ο . x17) ⟶ e643b.. x0 x2 x3 x4 x5 x6 x7 x8 x9 ⟶ 70d65.. (λ x17 x18 . not (x0 x17 x18)) x10 x11 x12 x13 x14 x15 x16 ⟶ 86706.. x1 x0 ⟶ 35fb6.. x1 x0 ⟶ (not (x0 x2 x13) ⟶ not (x0 x2 x14) ⟶ not (x0 x2 x11) ⟶ x0 x3 x12 ⟶ not (x0 x3 x11) ⟶ False) ⟶ (x0 x4 x10 ⟶ not (x0 x3 x10) ⟶ False) ⟶ (x0 x3 x10 ⟶ not (x0 x2 x10) ⟶ False) ⟶ (x0 x2 x14 ⟶ not (x0 x2 x11) ⟶ False) ⟶ (x0 x2 x13 ⟶ not (x0 x2 x11) ⟶ False) ⟶ (x0 x2 x12 ⟶ not (x0 x2 x11) ⟶ False) ⟶ False |
|