Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . ((∀ x1 : ι → ο . ∀ x2 . wb (wssb x1 x2) (∀ x3 . wceq (cv x3) (cv x2)∀ x4 . wceq (cv x4) (cv x3)x1 x4))(∀ x1 : ι → ο . ∀ x2 : ι → ι → ο . wb (wrnf x1 x2) (wrex x1 x2wral x1 x2))(∀ x1 : ι → ο . wceq (bj_csngl x1) (cab (λ x2 . wrex (λ x3 . wceq (cv x2) (csn (cv x3))) (λ x3 . x1))))(∀ x1 : ι → ο . wceq (bj_ctag x1) (cun (bj_csngl x1) (csn c0)))(∀ x1 x2 : ι → ο . wceq (bj_cproj x1 x2) (cab (λ x3 . wcel (csn (cv x3)) (cima x2 (csn x1)))))(∀ x1 : ι → ο . wceq (bj_c1upl x1) (cxp (csn c0) (bj_ctag x1)))(∀ x1 : ι → ο . wceq (bj_cpr1 x1) (bj_cproj c0 x1))(∀ x1 x2 : ι → ο . wceq (bj_c2uple x1 x2) (cun (bj_c1upl x1) (cxp (csn c1o) (bj_ctag x2))))(∀ x1 : ι → ο . wceq (bj_cpr2 x1) (bj_cproj c1o x1))wceq celwise (cmpt (λ x1 . cvv) (λ x1 . cmpt2 (λ x2 x3 . cvv) (λ x2 x3 . cvv) (λ x2 x3 . cab (λ x4 . wrex (λ x5 . wrex (λ x6 . wceq (cv x4) (co (cv x5) (cv x6) (cv x1))) (λ x6 . cv x3)) (λ x5 . cv x2)))))wceq cmoore (cab (λ x1 . wral (λ x2 . wcel (cin (cuni (cv x1)) (cint (cv x2))) (cv x1)) (λ x2 . cpw (cv x1))))(∀ x1 x2 x3 x4 : ι → ι → ι → ι → ο . ∀ x5 x6 . wceq (cmpt3 x1 x2 x3 x4) (copab (λ x7 x8 . wrex (λ x9 . wrex (λ x10 . wrex (λ x11 . wa (wceq (cv x7) (cotp (cv x9) (cv x10) (cv x11))) (wceq (cv x8) (x4 x9 x10 x11))) (x3 x9 x10)) (λ x10 . x2 x9 x10 x6)) (λ x9 . x1 x9 x5 x6))))wceq csethom (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . cab (λ x3 . wf (cv x1) (cv x2) (cv x3))))wceq ctophom (cmpt2 (λ x1 x2 . ctps) (λ x1 x2 . ctps) (λ x1 x2 . crab (λ x3 . wral (λ x4 . wcel (cima (ccnv (cv x3)) (cv x4)) (cfv (cv x1) ctopn)) (λ x4 . cfv (cv x2) ctopn)) (λ x3 . co (cfv (cv x1) cbs) (cfv (cv x2) cbs) csethom)))wceq cmgmhom (cmpt2 (λ x1 x2 . cmgm) (λ x1 x2 . cmgm) (λ x1 x2 . crab (λ x3 . wral (λ x4 . wral (λ x5 . wceq (cfv (co (cv x4) (cv x5) (cfv (cv x1) cplusg)) (cv x3)) (co (cfv (cv x4) (cv x3)) (cfv (cv x5) (cv x3)) (cfv (cv x2) cplusg))) (λ x5 . cfv (cv x1) cbs)) (λ x4 . cfv (cv x1) cbs)) (λ x3 . co (cfv (cv x1) cbs) (cfv (cv x2) cbs) csethom)))wceq ctopmgmhom (cmpt2 (λ x1 x2 . ctmd) (λ x1 x2 . ctmd) (λ x1 x2 . cin (co (cv x1) (cv x2) ctophom) (co (cv x1) (cv x2) cmgmhom)))wceq ccur_ (cmpt3 (λ x1 x2 x3 . cvv) (λ x1 x2 x3 . cvv) (λ x1 x2 x3 . cvv) (λ x1 x2 x3 . cmpt (λ x4 . co (cxp (cv x1) (cv x2)) (cv x3) csethom) (λ x4 . cmpt (λ x5 . cv x1) (λ x5 . cmpt (λ x6 . cv x2) (λ x6 . cfv (cop (cv x5) (cv x6)) (cv x4))))))wceq cunc_ (cmpt3 (λ x1 x2 x3 . cvv) (λ x1 x2 x3 . cvv) (λ x1 x2 x3 . cvv) (λ x1 x2 x3 . cmpt (λ x4 . co (cv x1) (co (cv x2) (cv x3) csethom) csethom) (λ x4 . cmpt2 (λ x5 x6 . cv x1) (λ x5 x6 . cv x2) (λ x5 x6 . cfv (cv x6) (cfv (cv x5) (cv x4))))))x0)x0
type
prop
theory
SetMM
name
df_ssb_b__df_bj_rnf__df_bj_sngl__df_bj_tag__df_bj_proj__df_bj_1upl__df_bj_pr1__df_bj_2upl__df_bj_pr2__df_elwise__df_bj_moore__df_bj_mpt3__df_bj_sethom__df_bj_tophom__df_bj_mgmhom__df_bj_topmgmhom__df_bj_cur__df_bj_unc
proof
PUV1k..
Megalodon
-
proofgold address
TMSUg..
creator
36224 PrCmT../6b72e..
owner
36224 PrCmT../6b72e..
term root
6b8a7..