vout |
---|
PrCit../7ad49.. 5.32 barsTMKQb../db481.. ownership of 639c7.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMYYA../b24be.. ownership of 31261.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0PUVBr../05ef9.. doc published by Pr4zB..Param ChurchNum_3ary_proj_p : (((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι)) → οParam ChurchNum_8ary_proj_p : (((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι)) → οDefinition TwoRamseyGraph_4_5_24_ChurchNums_3x8 := λ x0 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . λ x1 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . λ x2 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . λ x3 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . λ x4 . x0 (x1 (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5))) (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5))) (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5))) (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)))) (x1 (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5))) (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5))) (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)))) (x1 (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5))) (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6))) (x2 (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5))) (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5))) (x2 (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)) (x3 (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . λ x6 . x6) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5) (λ x5 : ι → ι . x5)))) (λ x5 . x4)Definition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseParam ChurchNums_3x8_eq : (((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι)) → (((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι)) → (((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι)) → (((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → CN (ι → ι)) → οDefinition ChurchNums_3x8_neq := λ x0 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . λ x1 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . λ x2 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . λ x3 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . not (ChurchNums_3x8_eq x0 x1 x2 x3)Known fc1b4.. : ∀ x0 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . ∀ x1 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . ChurchNum_3ary_proj_p x0 ⟶ ChurchNum_8ary_proj_p x1 ⟶ (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x3 x4 x5 : (ι → ι) → ι → ι . x3) (λ x3 x4 x5 x6 x7 x8 x9 x10 : (ι → ι) → ι → ι . x3) x0 x1 = λ x3 x4 . x3) ⟶ ∀ x2 : ο . ((x0 = λ x4 x5 x6 : (ι → ι) → ι → ι . x4) ⟶ (x1 = λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4) ⟶ x2) ⟶ ((x0 = λ x4 x5 x6 : (ι → ι) → ι → ι . x4) ⟶ (x1 = λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x5) ⟶ x2) ⟶ ((x0 = λ x4 x5 x6 : (ι → ι) → ι → ι . x4) ⟶ (x1 = λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x6) ⟶ x2) ⟶ ((x0 = λ x4 x5 x6 : (ι → ι) → ι → ι . x4) ⟶ (x1 = λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x8) ⟶ x2) ⟶ ((x0 = λ x4 x5 x6 : (ι → ι) → ι → ι . x5) ⟶ (x1 = λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4) ⟶ x2) ⟶ ((x0 = λ x4 x5 x6 : (ι → ι) → ι → ι . x5) ⟶ (x1 = λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x5) ⟶ x2) ⟶ ((x0 = λ x4 x5 x6 : (ι → ι) → ι → ι . x5) ⟶ (x1 = λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x11) ⟶ x2) ⟶ ((x0 = λ x4 x5 x6 : (ι → ι) → ι → ι . x6) ⟶ (x1 = λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4) ⟶ x2) ⟶ ((x0 = λ x4 x5 x6 : (ι → ι) → ι → ι . x6) ⟶ (x1 = λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x8) ⟶ x2) ⟶ ((x0 = λ x4 x5 x6 : (ι → ι) → ι → ι . x6) ⟶ (x1 = λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x10) ⟶ x2) ⟶ ((x0 = λ x4 x5 x6 : (ι → ι) → ι → ι . x6) ⟶ (x1 = λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x11) ⟶ x2) ⟶ x2Known f6916.. : ∀ x0 x1 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . ∀ x2 x3 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . x0 = x1 ⟶ x2 = x3 ⟶ ChurchNums_3x8_eq x0 x2 x1 x3Known FalseEFalseE : False ⟶ ∀ x0 : ο . x0Known 768c1.. : ((λ x1 x2 . x2) = λ x1 x2 . x1) ⟶ ∀ x0 : ο . x0Theorem 639c7.. : ∀ x0 x1 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . ∀ x2 x3 : ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι . ChurchNum_3ary_proj_p x0 ⟶ ChurchNum_3ary_proj_p x1 ⟶ ChurchNum_8ary_proj_p x2 ⟶ ChurchNum_8ary_proj_p x3 ⟶ (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι) → ι → ι . x5) x0 x2 = λ x5 x6 . x5) ⟶ (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι) → ι → ι . x5) x1 x3 = λ x5 x6 . x5) ⟶ (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι) → ι → ι . x7) x0 x2 = λ x5 x6 . x5) ⟶ (TwoRamseyGraph_4_5_24_ChurchNums_3x8 (λ x5 x6 x7 : (ι → ι) → ι → ι . x5) (λ x5 x6 x7 x8 x9 x10 x11 x12 : (ι → ι) → ι → ι . x7) x1 x3 = λ x5 x6 . x5) ⟶ (TwoRamseyGraph_4_5_24_ChurchNums_3x8 x0 x2 x1 x3 = λ x5 x6 . x5) ⟶ ChurchNums_3x8_neq (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4) x0 x2 ⟶ ChurchNums_3x8_neq (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x6) x0 x2 ⟶ ChurchNums_3x8_neq (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x4) x1 x3 ⟶ ChurchNums_3x8_neq (λ x4 x5 x6 : (ι → ι) → ι → ι . x4) (λ x4 x5 x6 x7 x8 x9 x10 x11 : (ι → ι) → ι → ι . x6) x1 x3 ⟶ ChurchNums_3x8_neq x0 x2 x1 x3 ⟶ False (proof) |
|