∀ x0 : (((ι → ι → ι) → ι → ι) → (((ι → ι) → ι) → ι) → (ι → ι → ι) → ι) → ι → ι . ∀ x1 : (ι → ι → ι → (ι → ι) → ι) → (ι → ι) → ((ι → ι) → (ι → ι) → ι → ι) → ι . ∀ x2 : ((ι → ι → ι) → ι) → (ι → ((ι → ι) → ι) → ι) → ι → ι . ∀ x3 : (ι → ι) → ι → ι . (∀ x4 x5 . ∀ x6 : ι → ι . ∀ x7 . x3 (λ x9 . Inj1 (x3 (λ x10 . x3 (λ x11 . Inj0 0) (x3 (λ x11 . 0) 0)) 0)) x5 = x5) ⟶ (∀ x4 . ∀ x5 : ι → ι . ∀ x6 x7 . x3 (λ x9 . x2 (λ x10 : ι → ι → ι . x10 (Inj0 0) (x1 (λ x11 x12 x13 . λ x14 : ι → ι . x0 (λ x15 : (ι → ι → ι) → ι → ι . λ x16 : ((ι → ι) → ι) → ι . λ x17 : ι → ι → ι . 0) 0) (λ x11 . x2 (λ x12 : ι → ι → ι . 0) (λ x12 . λ x13 : (ι → ι) → ι . 0) 0) (λ x11 x12 : ι → ι . λ x13 . x11 0))) (λ x10 . λ x11 : (ι → ι) → ι . x0 (λ x12 : (ι → ι → ι) → ι → ι . λ x13 : ((ι → ι) → ι) → ι . λ x14 : ι → ι → ι . x12 (λ x15 x16 . 0) (x0 (λ x15 : (ι → ι → ι) → ι → ι . λ x16 : ((ι → ι) → ι) → ι . λ x17 : ι → ι → ι . 0) 0)) (Inj0 0)) 0) (x0 (λ x9 : (ι → ι → ι) → ι → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι → ι . x7) x6) = x0 (λ x9 : (ι → ι → ι) → ι → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι → ι . Inj0 (Inj0 (x2 (λ x12 : ι → ι → ι . x12 0 0) (λ x12 . λ x13 : (ι → ι) → ι . 0) x7))) (x0 (λ x9 : (ι → ι → ι) → ι → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι → ι . 0) x6)) ⟶ (∀ x4 : (ι → ι) → ι . ∀ x5 . ∀ x6 : ι → ι . ∀ x7 : (ι → ι) → ι → ι → ι . x2 (λ x9 : ι → ι → ι . x9 (setsum 0 (x3 (λ x10 . 0) (x9 0 0))) (setsum (x0 (λ x10 : (ι → ι → ι) → ι → ι . λ x11 : ((ι → ι) → ι) → ι . λ x12 : ι → ι → ι . 0) 0) (x1 (λ x10 x11 x12 . λ x13 : ι → ι . x10) (λ x10 . setsum 0 0) (λ x10 x11 : ι → ι . λ x12 . x0 (λ x13 : (ι → ι → ι) → ι → ι . λ x14 : ((ι → ι) → ι) → ι . λ x15 : ι → ι → ι . 0) 0)))) (λ x9 . λ x10 : (ι → ι) → ι . x1 (λ x11 x12 x13 . λ x14 : ι → ι . 0) (λ x11 . x0 (λ x12 : (ι → ι → ι) → ι → ι . λ x13 : ((ι → ι) → ι) → ι . λ x14 : ι → ι → ι . x12 (λ x15 x16 . 0) 0) (x0 (λ x12 : (ι → ι → ι) → ι → ι . λ x13 : ((ι → ι) → ι) → ι . λ x14 : ι → ι → ι . 0) (x2 (λ x12 : ι → ι → ι . 0) (λ x12 . λ x13 : (ι → ι) → ι . 0) 0))) (λ x11 x12 : ι → ι . λ x13 . setsum 0 (x1 (λ x14 x15 x16 . λ x17 : ι → ι . setsum 0 0) (λ x14 . x3 (λ x15 . 0) 0) (λ x14 x15 : ι → ι . λ x16 . x3 (λ x17 . 0) 0)))) (x6 (Inj1 (x6 (x3 (λ x9 . 0) 0)))) = Inj0 (setsum (Inj1 (x6 0)) 0)) ⟶ (∀ x4 : ι → ι → (ι → ι) → ι . ∀ x5 x6 . ∀ x7 : ι → ι . x2 (λ x9 : ι → ι → ι . 0) (λ x9 . λ x10 : (ι → ι) → ι . Inj1 (Inj1 (Inj1 (setsum 0 0)))) x6 = Inj1 (Inj0 (x1 (λ x9 x10 x11 . λ x12 : ι → ι . x9) (λ x9 . 0) (λ x9 x10 : ι → ι . λ x11 . 0)))) ⟶ (∀ x4 : ι → ι . ∀ x5 : ι → (ι → ι → ι) → ι . ∀ x6 : ι → ι . ∀ x7 . x1 (λ x9 x10 x11 . λ x12 : ι → ι . setsum (x1 (λ x13 x14 x15 . λ x16 : ι → ι . x13) Inj0 (λ x13 x14 : ι → ι . λ x15 . 0)) (x1 (λ x13 x14 x15 . λ x16 : ι → ι . setsum (x1 (λ x17 x18 x19 . λ x20 : ι → ι . 0) (λ x17 . 0) (λ x17 x18 : ι → ι . λ x19 . 0)) (x1 (λ x17 x18 x19 . λ x20 : ι → ι . 0) (λ x17 . 0) (λ x17 x18 : ι → ι . λ x19 . 0))) (λ x13 . x10) (λ x13 x14 : ι → ι . λ x15 . setsum 0 (Inj0 0)))) (λ x9 . setsum (x2 (λ x10 : ι → ι → ι . 0) (λ x10 . λ x11 : (ι → ι) → ι . 0) (x0 (λ x10 : (ι → ι → ι) → ι → ι . λ x11 : ((ι → ι) → ι) → ι . λ x12 : ι → ι → ι . x10 (λ x13 x14 . 0) 0) 0)) (x5 (Inj1 x7) (λ x10 x11 . x1 (λ x12 x13 x14 . λ x15 : ι → ι . x3 (λ x16 . 0) 0) (λ x12 . 0) (λ x12 x13 : ι → ι . λ x14 . x11)))) (λ x9 x10 : ι → ι . λ x11 . x3 (λ x12 . x10 0) (x0 (λ x12 : (ι → ι → ι) → ι → ι . λ x13 : ((ι → ι) → ι) → ι . λ x14 : ι → ι → ι . x14 (Inj1 0) (x14 0 0)) 0)) = x3 (λ x9 . x5 0 (λ x10 x11 . x11)) (setsum (Inj0 (x1 (λ x9 x10 x11 . λ x12 : ι → ι . x11) (λ x9 . x7) (λ x9 x10 : ι → ι . λ x11 . 0))) (setsum (x3 (λ x9 . Inj0 0) (x2 (λ x9 : ι → ι → ι . 0) (λ x9 . λ x10 : (ι → ι) → ι . 0) 0)) (x1 (λ x9 x10 x11 . λ x12 : ι → ι . x1 (λ x13 x14 x15 . λ x16 : ι → ι . 0) (λ x13 . 0) (λ x13 x14 : ι → ι . λ x15 . 0)) (λ x9 . 0) (λ x9 x10 : ι → ι . λ x11 . x0 (λ x12 : (ι → ι → ι) → ι → ι . λ x13 : ((ι → ι) → ι) → ι . λ x14 : ι → ι → ι . 0) 0))))) ⟶ (∀ x4 : (ι → (ι → ι) → ι → ι) → (ι → ι) → ι → ι . ∀ x5 : ι → ι → (ι → ι) → ι . ∀ x6 x7 . x1 (λ x9 x10 x11 . λ x12 : ι → ι . x0 (λ x13 : (ι → ι → ι) → ι → ι . λ x14 : ((ι → ι) → ι) → ι . λ x15 : ι → ι → ι . Inj0 (setsum (Inj0 0) (x12 0))) 0) (λ x9 . 0) (λ x9 x10 : ι → ι . λ x11 . 0) = setsum 0 0) ⟶ (∀ x4 x5 . ∀ x6 : (((ι → ι) → ι → ι) → (ι → ι) → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι . ∀ x7 : (((ι → ι) → ι → ι) → ι) → ι . x0 (λ x9 : (ι → ι → ι) → ι → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι → ι . setsum (x1 (λ x12 x13 x14 . λ x15 : ι → ι . x14) (λ x12 . setsum (Inj0 0) (Inj0 0)) (λ x12 x13 : ι → ι . λ x14 . x0 (λ x15 : (ι → ι → ι) → ι → ι . λ x16 : ((ι → ι) → ι) → ι . λ x17 : ι → ι → ι . 0) (x11 0 0))) 0) (setsum (x0 (λ x9 : (ι → ι → ι) → ι → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι → ι . x3 (λ x12 . setsum 0 0) 0) 0) 0) = x4) ⟶ (∀ x4 : (ι → ι → ι → ι) → ι . ∀ x5 : (ι → (ι → ι) → ι) → ι . ∀ x6 : (((ι → ι) → ι → ι) → ι) → (ι → ι) → ι . ∀ x7 . x0 (λ x9 : (ι → ι → ι) → ι → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι → ι . 0) x7 = x7) ⟶ False |
|