Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCit..
/
1dd71..
PUbNr..
/
66089..
vout
PrCit..
/
fa553..
3.93 bars
TMdzq..
/
3f859..
ownership of
8acb5..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMULb..
/
12ff0..
ownership of
3fef0..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMMSf..
/
22b0d..
ownership of
3eb85..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMWC1..
/
87223..
ownership of
3d1c8..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
PURdm..
/
a15f7..
doc published by
Pr4zB..
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Param
SetAdjoin
SetAdjoin
:
ι
→
ι
→
ι
Param
UPair
UPair
:
ι
→
ι
→
ι
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Param
and
and
:
ο
→
ο
→
ο
Definition
DirGraphOutNeighbors
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
λ x2 .
{x3 ∈
x0
|
and
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
(
x1
x2
x3
)
}
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Known
8698a..
:
∀ x0 x1 x2 x3 .
∀ x4 :
ι → ο
.
x4
x0
⟶
x4
x1
⟶
x4
x2
⟶
x4
x3
⟶
∀ x5 .
x5
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
⟶
x4
x5
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
setminusE2
setminusE2
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
nIn
x2
x1
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Param
nat_p
nat_p
:
ι
→
ο
Known
4fb58..
Pigeonhole_not_atleastp_ordsucc
:
∀ x0 .
nat_p
x0
⟶
not
(
atleastp
(
ordsucc
x0
)
x0
)
Known
nat_2
nat_2
:
nat_p
2
Definition
u3
:=
ordsucc
u2
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Known
5d098..
:
∀ x0 x1 .
x1
∈
x0
⟶
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
(
x1
=
x2
⟶
∀ x4 : ο .
x4
)
⟶
(
x1
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
atleastp
u3
x0
Known
binintersectI
binintersectI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
x1
⟶
x2
∈
binintersect
x0
x1
Known
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
b253c..
:
∀ x0 x1 x2 x3 .
x3
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Known
e588e..
:
∀ x0 x1 x2 x3 .
x1
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Known
69a9c..
:
∀ x0 x1 x2 x3 .
x0
∈
SetAdjoin
(
SetAdjoin
(
UPair
x0
x1
)
x2
)
x3
Theorem
3eb85..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 x3 x4 x5 .
x2
⊆
x0
⟶
x3
⊆
x0
⟶
x4
⊆
x0
⟶
x5
⊆
x0
⟶
(
∀ x6 .
x6
∈
x2
⟶
nIn
x6
x5
)
⟶
(
∀ x6 .
x6
∈
x2
⟶
nIn
x6
x3
)
⟶
(
∀ x6 .
x6
∈
x4
⟶
nIn
x6
x2
)
⟶
(
∀ x6 .
x6
∈
x4
⟶
nIn
x6
x3
)
⟶
(
∀ x6 .
x6
∈
x4
⟶
nIn
x6
x5
)
⟶
(
∀ x6 .
x6
∈
x3
⟶
nIn
x6
x5
)
⟶
∀ x6 x7 x8 x9 x10 .
x4
=
SetAdjoin
(
SetAdjoin
(
UPair
x6
x7
)
x8
)
x9
⟶
x10
∈
x5
⟶
(
∀ x11 .
x11
∈
x4
⟶
(
x11
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x1
x11
x10
)
⟶
atleastp
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x11
)
(
DirGraphOutNeighbors
x0
x1
x10
)
)
u2
)
⟶
x6
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x7
)
(
DirGraphOutNeighbors
x0
x1
x10
)
⟶
x6
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x9
)
(
DirGraphOutNeighbors
x0
x1
x10
)
⟶
not
(
x1
x7
x10
)
⟶
not
(
x1
x9
x10
)
⟶
∀ x11 x12 :
ι → ι
.
(
∀ x13 .
x13
∈
x4
⟶
x11
x13
∈
x2
)
⟶
(
∀ x13 .
x13
∈
x4
⟶
x11
x13
∈
DirGraphOutNeighbors
x0
x1
x13
)
⟶
(
∀ x13 .
x13
∈
x4
⟶
x12
x13
∈
x3
)
⟶
(
∀ x13 .
x13
∈
x4
⟶
x12
x13
∈
DirGraphOutNeighbors
x0
x1
x13
)
⟶
∀ x13 .
x13
∈
x4
⟶
x13
∈
{x14 ∈
setminus
x4
(
Sing
x6
)
|
x1
(
x11
x14
)
x10
}
⟶
x13
∈
{x14 ∈
setminus
x4
(
Sing
x6
)
|
x1
(
x12
x14
)
x10
}
⟶
x13
=
x8
(proof)
Param
u6
:
ι
Theorem
8acb5..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u6
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x1
x3
x4
)
)
)
⟶
∀ x2 x3 x4 x5 .
x2
⊆
x0
⟶
x3
⊆
x0
⟶
x4
⊆
x0
⟶
x5
⊆
x0
⟶
(
∀ x6 .
x6
∈
x2
⟶
nIn
x6
x5
)
⟶
(
∀ x6 .
x6
∈
x2
⟶
nIn
x6
x3
)
⟶
(
∀ x6 .
x6
∈
x4
⟶
nIn
x6
x2
)
⟶
(
∀ x6 .
x6
∈
x4
⟶
nIn
x6
x3
)
⟶
(
∀ x6 .
x6
∈
x4
⟶
nIn
x6
x5
)
⟶
(
∀ x6 .
x6
∈
x3
⟶
nIn
x6
x5
)
⟶
∀ x6 x7 x8 x9 x10 .
x4
=
SetAdjoin
(
SetAdjoin
(
UPair
x6
x7
)
x8
)
x9
⟶
x10
∈
x5
⟶
(
x7
=
x6
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x6
⟶
∀ x11 : ο .
x11
)
⟶
(
x9
=
x6
⟶
∀ x11 : ο .
x11
)
⟶
(
x8
=
x7
⟶
∀ x11 : ο .
x11
)
⟶
(
x9
=
x7
⟶
∀ x11 : ο .
x11
)
⟶
(
x9
=
x8
⟶
∀ x11 : ο .
x11
)
⟶
x1
x6
x7
⟶
x1
x7
x8
⟶
x1
x8
x9
⟶
x1
x9
x6
⟶
(
∀ x11 .
x11
∈
x4
⟶
(
x11
=
x10
⟶
∀ x12 : ο .
x12
)
⟶
not
(
x1
x11
x10
)
⟶
atleastp
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x11
)
(
DirGraphOutNeighbors
x0
x1
x10
)
)
u2
)
⟶
x6
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x7
)
(
DirGraphOutNeighbors
x0
x1
x10
)
⟶
x6
∈
binintersect
(
DirGraphOutNeighbors
x0
x1
x9
)
(
DirGraphOutNeighbors
x0
x1
x10
)
⟶
not
(
x1
x7
x10
)
⟶
not
(
x1
x9
x10
)
⟶
∀ x11 x12 :
ι → ι
.
(
∀ x13 .
x13
∈
x4
⟶
x11
x13
∈
x2
)
⟶
(
∀ x13 .
x13
∈
x4
⟶
x11
x13
∈
DirGraphOutNeighbors
x0
x1
x13
)
⟶
(
∀ x13 .
x13
∈
x4
⟶
x12
x13
∈
x3
)
⟶
(
∀ x13 .
x13
∈
x4
⟶
x12
x13
∈
DirGraphOutNeighbors
x0
x1
x13
)
⟶
∀ x13 .
x13
∈
x4
⟶
x13
∈
{x14 ∈
setminus
x4
(
Sing
x6
)
|
x1
(
x11
x14
)
x10
}
⟶
x13
∈
{x14 ∈
setminus
x4
(
Sing
x6
)
|
x1
(
x12
x14
)
x10
}
⟶
x13
=
x8
(proof)