Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCit../1dd71..
PUbNr../66089..
vout
PrCit../fa553.. 3.93 bars
TMdzq../3f859.. ownership of 8acb5.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMULb../12ff0.. ownership of 3fef0.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMMSf../22b0d.. ownership of 3eb85.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMWC1../87223.. ownership of 3d1c8.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PURdm../a15f7.. doc published by Pr4zB..
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Param SetAdjoinSetAdjoin : ιιι
Param UPairUPair : ιιι
Param atleastpatleastp : ιιο
Param binintersectbinintersect : ιιι
Param SepSep : ι(ιο) → ι
Param andand : οοο
Definition DirGraphOutNeighbors := λ x0 . λ x1 : ι → ι → ο . λ x2 . {x3 ∈ x0|and (x2 = x3∀ x4 : ο . x4) (x1 x2 x3)}
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u2 := ordsucc u1
Param setminussetminus : ιιι
Param SingSing : ιι
Known 8698a.. : ∀ x0 x1 x2 x3 . ∀ x4 : ι → ο . x4 x0x4 x1x4 x2x4 x3∀ x5 . x5SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3x4 x5
Known FalseEFalseE : False∀ x0 : ο . x0
Known setminusE2setminusE2 : ∀ x0 x1 x2 . x2setminus x0 x1nIn x2 x1
Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x2x0
Known SingISingI : ∀ x0 . x0Sing x0
Param nat_pnat_p : ιο
Known 4fb58..Pigeonhole_not_atleastp_ordsucc : ∀ x0 . nat_p x0not (atleastp (ordsucc x0) x0)
Known nat_2nat_2 : nat_p 2
Definition u3 := ordsucc u2
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Known 5d098.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0(x1 = x2∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)atleastp u3 x0
Known binintersectIbinintersectI : ∀ x0 x1 x2 . x2x0x2x1x2binintersect x0 x1
Known SepE2SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x1 x2
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known b253c.. : ∀ x0 x1 x2 x3 . x3SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3
Known e588e.. : ∀ x0 x1 x2 x3 . x1SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3
Known 69a9c.. : ∀ x0 x1 x2 x3 . x0SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3
Theorem 3eb85.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)∀ x2 x3 x4 x5 . x2x0x3x0x4x0x5x0(∀ x6 . x6x2nIn x6 x5)(∀ x6 . x6x2nIn x6 x3)(∀ x6 . x6x4nIn x6 x2)(∀ x6 . x6x4nIn x6 x3)(∀ x6 . x6x4nIn x6 x5)(∀ x6 . x6x3nIn x6 x5)∀ x6 x7 x8 x9 x10 . x4 = SetAdjoin (SetAdjoin (UPair x6 x7) x8) x9x10x5(∀ x11 . x11x4(x11 = x10∀ x12 : ο . x12)not (x1 x11 x10)atleastp (binintersect (DirGraphOutNeighbors x0 x1 x11) (DirGraphOutNeighbors x0 x1 x10)) u2)x6binintersect (DirGraphOutNeighbors x0 x1 x7) (DirGraphOutNeighbors x0 x1 x10)x6binintersect (DirGraphOutNeighbors x0 x1 x9) (DirGraphOutNeighbors x0 x1 x10)not (x1 x7 x10)not (x1 x9 x10)∀ x11 x12 : ι → ι . (∀ x13 . x13x4x11 x13x2)(∀ x13 . x13x4x11 x13DirGraphOutNeighbors x0 x1 x13)(∀ x13 . x13x4x12 x13x3)(∀ x13 . x13x4x12 x13DirGraphOutNeighbors x0 x1 x13)∀ x13 . x13x4x13{x14 ∈ setminus x4 (Sing x6)|x1 (x11 x14) x10}x13{x14 ∈ setminus x4 (Sing x6)|x1 (x12 x14) x10}x13 = x8 (proof)
Param u6 : ι
Theorem 8acb5.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)(∀ x2 . x2x0atleastp u3 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x1 x3 x4))(∀ x2 . x2x0atleastp u6 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x1 x3 x4)))∀ x2 x3 x4 x5 . x2x0x3x0x4x0x5x0(∀ x6 . x6x2nIn x6 x5)(∀ x6 . x6x2nIn x6 x3)(∀ x6 . x6x4nIn x6 x2)(∀ x6 . x6x4nIn x6 x3)(∀ x6 . x6x4nIn x6 x5)(∀ x6 . x6x3nIn x6 x5)∀ x6 x7 x8 x9 x10 . x4 = SetAdjoin (SetAdjoin (UPair x6 x7) x8) x9x10x5(x7 = x6∀ x11 : ο . x11)(x8 = x6∀ x11 : ο . x11)(x9 = x6∀ x11 : ο . x11)(x8 = x7∀ x11 : ο . x11)(x9 = x7∀ x11 : ο . x11)(x9 = x8∀ x11 : ο . x11)x1 x6 x7x1 x7 x8x1 x8 x9x1 x9 x6(∀ x11 . x11x4(x11 = x10∀ x12 : ο . x12)not (x1 x11 x10)atleastp (binintersect (DirGraphOutNeighbors x0 x1 x11) (DirGraphOutNeighbors x0 x1 x10)) u2)x6binintersect (DirGraphOutNeighbors x0 x1 x7) (DirGraphOutNeighbors x0 x1 x10)x6binintersect (DirGraphOutNeighbors x0 x1 x9) (DirGraphOutNeighbors x0 x1 x10)not (x1 x7 x10)not (x1 x9 x10)∀ x11 x12 : ι → ι . (∀ x13 . x13x4x11 x13x2)(∀ x13 . x13x4x11 x13DirGraphOutNeighbors x0 x1 x13)(∀ x13 . x13x4x12 x13x3)(∀ x13 . x13x4x12 x13DirGraphOutNeighbors x0 x1 x13)∀ x13 . x13x4x13{x14 ∈ setminus x4 (Sing x6)|x1 (x11 x14) x10}x13{x14 ∈ setminus x4 (Sing x6)|x1 (x12 x14) x10}x13 = x8 (proof)