Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCit..
/
36034..
PUh71..
/
1f838..
vout
PrCit..
/
850de..
6.05 bars
TMP3Z..
/
10836..
ownership of
637fa..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMJ5r..
/
203d0..
ownership of
d1c9f..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMNxM..
/
70da5..
ownership of
5b8f6..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMakE..
/
48917..
ownership of
33f2c..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMHXj..
/
d01a8..
ownership of
8d9bb..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMF8i..
/
e9432..
ownership of
52f5a..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMQCs..
/
adbb0..
ownership of
147c9..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMNVy..
/
eda33..
ownership of
1b4b3..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMQWN..
/
2d939..
ownership of
a1a2d..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMLa8..
/
9e74e..
ownership of
db47e..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMGCt..
/
515c5..
ownership of
ccce4..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMKay..
/
d9983..
ownership of
9d9e6..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMMSG..
/
9d1e5..
ownership of
81538..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMbJ9..
/
64bee..
ownership of
0e4f7..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMcBQ..
/
bb699..
ownership of
1dda3..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMR1G..
/
6d2fe..
ownership of
5c35d..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMM77..
/
9e046..
ownership of
05bae..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMdAa..
/
dbde6..
ownership of
35f64..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMRpV..
/
aa35b..
ownership of
f15c1..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMU6u..
/
525ed..
ownership of
ad780..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMTc9..
/
bbfbd..
ownership of
a8c9c..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMcrH..
/
59c30..
ownership of
df487..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMdtF..
/
13d4e..
ownership of
d3ec1..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMa16..
/
5cbb9..
ownership of
4bc4e..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMTfb..
/
8dc2c..
ownership of
ac394..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMUyz..
/
4b69e..
ownership of
2b48c..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
PrRh4..
/
0aa34..
0.00 bars
PrFj7..
/
aac4f..
0.00 bars
PUfc5..
/
f0401..
doc published by
Pr4zB..
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
ChurchNum_ii_6
:=
λ x0 :
(
ι → ι
)
→
ι → ι
.
λ x1 :
ι → ι
.
x0
(
x0
(
x0
(
x0
(
x0
(
x0
x1
)
)
)
)
)
Definition
ChurchNum2
:=
λ x0 :
ι → ι
.
λ x1 .
x0
(
x0
x1
)
Definition
ChurchNum_ii_2
:=
λ x0 :
(
ι → ι
)
→
ι → ι
.
λ x1 :
ι → ι
.
x0
(
x0
x1
)
Definition
ChurchNum_ii_3
:=
λ x0 :
(
ι → ι
)
→
ι → ι
.
λ x1 :
ι → ι
.
x0
(
x0
(
x0
x1
)
)
Known
9ba2f..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
x0
x2
)
)
⟶
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
ChurchNum_ii_3
ChurchNum2
x0
x2
)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
7df32..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
x0
x2
)
)
⟶
∀ x2 x3 .
x1
x3
x2
⟶
x1
x3
(
ChurchNum_ii_2
ChurchNum2
x0
x2
)
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Theorem
ac394..
:
51
∈
ChurchNum_ii_6
ChurchNum2
ordsucc
0
(proof)
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Param
nat_p
nat_p
:
ι
→
ο
Known
69b84..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
(
∀ x3 .
x1
x3
⟶
x1
(
x0
x3
)
)
⟶
(
∀ x3 .
x1
x3
⟶
x2
(
x0
x3
)
=
x0
(
x2
x3
)
)
⟶
∀ x3 .
x1
x3
⟶
x2
(
ChurchNum_ii_3
ChurchNum2
x0
x3
)
=
ChurchNum_ii_3
ChurchNum2
x0
(
x2
x3
)
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Known
add_nat_SR
add_nat_SR
:
∀ x0 x1 .
nat_p
x1
⟶
add_nat
x0
(
ordsucc
x1
)
=
ordsucc
(
add_nat
x0
x1
)
Known
nat_1
nat_1
:
nat_p
1
Known
nat_0
nat_0
:
nat_p
0
Known
add_nat_0R
add_nat_0R
:
∀ x0 .
add_nat
x0
0
=
x0
Theorem
d3ec1..
:
add_nat
41
9
=
50
(proof)
Param
TwoRamseyProp
TwoRamseyProp
:
ι
→
ι
→
ι
→
ο
Param
TwoRamseyProp_atleastp
:
ι
→
ι
→
ι
→
ο
Known
97c7e..
:
∀ x0 x1 x2 x3 .
nat_p
x2
⟶
nat_p
x3
⟶
TwoRamseyProp_atleastp
(
ordsucc
x0
)
x1
x2
⟶
TwoRamseyProp_atleastp
x0
(
ordsucc
x1
)
x3
⟶
TwoRamseyProp
(
ordsucc
x0
)
(
ordsucc
x1
)
(
ordsucc
(
add_nat
x2
x3
)
)
Definition
ChurchNum_ii_5
:=
λ x0 :
(
ι → ι
)
→
ι → ι
.
λ x1 :
ι → ι
.
x0
(
x0
(
x0
(
x0
(
x0
x1
)
)
)
)
Known
9821b..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
x1
(
x0
x2
)
)
⟶
∀ x2 .
x1
x2
⟶
x1
(
ChurchNum_ii_5
ChurchNum2
x0
x2
)
Known
nat_9
nat_9
:
nat_p
9
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Known
TwoRamseyProp_atleastp_atleastp
:
∀ x0 x1 x2 x3 x4 .
TwoRamseyProp
x0
x2
x4
⟶
atleastp
x1
x0
⟶
atleastp
x3
x2
⟶
TwoRamseyProp_atleastp
x1
x3
x4
Known
TwoRamseyProp_3_8_41
:
TwoRamseyProp
3
8
41
Known
atleastp_ref
:
∀ x0 .
atleastp
x0
x0
Known
95eb4..
:
∀ x0 .
TwoRamseyProp_atleastp
2
x0
x0
Theorem
TwoRamseyProp_3_9_51
:
TwoRamseyProp
3
9
51
(proof)
Known
46dcf..
:
∀ x0 x1 x2 x3 .
atleastp
x2
x3
⟶
TwoRamseyProp
x0
x1
x2
⟶
TwoRamseyProp
x0
x1
x3
Param
exp_nat
exp_nat
:
ι
→
ι
→
ι
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Known
b3a97..
:
exp_nat
2
6
=
ChurchNum_ii_6
ChurchNum2
ordsucc
0
Known
nat_In_atleastp
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
atleastp
x1
x0
Known
5a366..
:
nat_p
64
Param
equip
equip
:
ι
→
ι
→
ο
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
293d3..
:
∀ x0 .
nat_p
x0
⟶
equip
(
prim4
x0
)
(
exp_nat
2
x0
)
Known
nat_6
nat_6
:
nat_p
6
Theorem
TwoRamseyProp_3_9_Power_6
TwoRamseyProp_3_9_Power_6
:
TwoRamseyProp
3
9
(
prim4
6
)
(proof)
Known
697c6..
:
∀ x0 x1 x2 x3 .
x2
⊆
x3
⟶
TwoRamseyProp
x0
x1
x2
⟶
TwoRamseyProp
x0
x1
x3
Known
78a3e..
:
∀ x0 .
prim4
x0
⊆
prim4
(
ordsucc
x0
)
Theorem
TwoRamseyProp_3_9_Power_7
TwoRamseyProp_3_9_Power_7
:
TwoRamseyProp
3
9
(
prim4
7
)
(proof)
Theorem
TwoRamseyProp_3_9_Power_8
TwoRamseyProp_3_9_Power_8
:
TwoRamseyProp
3
9
(
prim4
8
)
(proof)
Definition
ChurchNum_ii_4
:=
λ x0 :
(
ι → ι
)
→
ι → ι
.
λ x1 :
ι → ι
.
x0
(
x0
(
x0
(
x0
x1
)
)
)
Known
3ae46..
:
∀ x0 :
ι → ι
.
∀ x1 :
ι → ο
.
(
∀ x2 .
x1
x2
⟶
x1
(
x0
x2
)
)
⟶
∀ x2 .
x1
x2
⟶
x1
(
ChurchNum_ii_4
ChurchNum2
x0
x2
)
Known
nat_3
nat_3
:
nat_p
3
Theorem
81538..
:
nat_p
51
(proof)
Known
nat_2
nat_2
:
nat_p
2
Theorem
ccce4..
:
add_nat
51
10
=
61
(proof)
Theorem
a1a2d..
:
62
∈
ChurchNum_ii_6
ChurchNum2
ordsucc
0
(proof)
Known
nat_10
nat_10
:
nat_p
10
Theorem
TwoRamseyProp_3_10_62
:
TwoRamseyProp
3
10
62
(proof)
Theorem
TwoRamseyProp_3_10_Power_6
TwoRamseyProp_3_10_Power_6
:
TwoRamseyProp
3
10
(
prim4
6
)
(proof)
Theorem
TwoRamseyProp_3_10_Power_7
TwoRamseyProp_3_10_Power_7
:
TwoRamseyProp
3
10
(
prim4
7
)
(proof)
Theorem
TwoRamseyProp_3_10_Power_8
TwoRamseyProp_3_10_Power_8
:
TwoRamseyProp
3
10
(
prim4
8
)
(proof)