Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrKgQ..
/
68407..
PUQTo..
/
85f1c..
vout
PrKgQ..
/
7fbe6..
0.18 bars
TMV88..
/
e7b39..
negprop ownership controlledby
PrEBh..
upto 0
TMNDj..
/
6da86..
negprop ownership controlledby
PrEBh..
upto 0
TMUje..
/
12ac6..
ownership of
2fd7e..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMRQ7..
/
7a2c0..
ownership of
6cc20..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMVof..
/
d8690..
ownership of
d6d09..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMUsF..
/
97edd..
ownership of
75815..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMGyk..
/
53262..
ownership of
d2cf4..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMWtW..
/
fce9e..
ownership of
7fa73..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMRkT..
/
e3460..
ownership of
9460d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMYvc..
/
a859c..
ownership of
44f22..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMYWe..
/
feec8..
ownership of
ee3b3..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMdQB..
/
76010..
ownership of
fced6..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMZE2..
/
4028d..
ownership of
d4e5c..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMZ3D..
/
beec1..
ownership of
c1d3d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMTdC..
/
50960..
ownership of
d27a8..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMT3E..
/
c398d..
ownership of
1016d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMNVd..
/
095b3..
ownership of
10b92..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMQmD..
/
4eb6f..
ownership of
3692d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJs2..
/
f823a..
ownership of
71d59..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPSH..
/
35e51..
ownership of
08880..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJ39..
/
e5e13..
ownership of
b2d5d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMQUE..
/
a5c5b..
ownership of
019eb..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMNQo..
/
8021e..
ownership of
17458..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMQRG..
/
e37cf..
ownership of
70ffe..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMViF..
/
76326..
ownership of
49763..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMb1z..
/
02367..
ownership of
7e884..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMShn..
/
ee9e5..
ownership of
71659..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMbgV..
/
d1f90..
ownership of
5bb34..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMFnS..
/
8e8ec..
ownership of
105dd..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJXQ..
/
4e172..
ownership of
6b40b..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMXZe..
/
5043b..
ownership of
54f6a..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPMu..
/
05262..
ownership of
4ed7a..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMc3z..
/
0fcdd..
ownership of
0dd18..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMFoW..
/
b5455..
ownership of
85563..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMSNB..
/
403d5..
ownership of
c3477..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMdWB..
/
9be9b..
ownership of
c951e..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMXBC..
/
09779..
ownership of
68a11..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMYNa..
/
01912..
ownership of
72cb3..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMFbU..
/
fd378..
ownership of
66e9d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMYSE..
/
d6b06..
ownership of
5d29d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJuo..
/
c7742..
ownership of
19844..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMP8q..
/
9b3c3..
ownership of
a83a3..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMLS1..
/
636c4..
ownership of
e6e14..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMd8V..
/
13aec..
ownership of
0f872..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMbC8..
/
93caa..
ownership of
700c1..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJzq..
/
e2a9c..
ownership of
e4a7e..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMZmG..
/
e5899..
ownership of
71a48..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMaxB..
/
e806a..
ownership of
5bd83..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMSTp..
/
1855b..
ownership of
a6627..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMNHV..
/
f2d50..
ownership of
34cda..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMTTi..
/
4d02f..
ownership of
0eec1..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMLjt..
/
9475c..
ownership of
91e83..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMVDx..
/
3f404..
ownership of
1a527..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMGVM..
/
5ce8f..
ownership of
33e34..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPfT..
/
4faa9..
ownership of
568d6..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPez..
/
d5538..
ownership of
0443f..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMXGs..
/
58a26..
ownership of
d432e..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPE4..
/
6fe35..
ownership of
3db46..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMX6g..
/
a7c30..
ownership of
95edd..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMLFp..
/
43fca..
ownership of
8a70d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMV1M..
/
5c738..
ownership of
e5c69..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMbHj..
/
c6c5c..
ownership of
a6222..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPbx..
/
f04db..
ownership of
788ee..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMZzJ..
/
d0df0..
ownership of
c3148..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMaZN..
/
bd982..
ownership of
df039..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJxX..
/
09895..
ownership of
95501..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMQQd..
/
26ad6..
ownership of
e28a3..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMQx6..
/
22be3..
ownership of
e6c1f..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMGqQ..
/
7a066..
ownership of
06552..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMFWC..
/
f6ac1..
ownership of
bab06..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJAh..
/
d6ed2..
ownership of
ebfe1..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMS2t..
/
fa742..
ownership of
cc324..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMMV2..
/
e2350..
ownership of
18ea9..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMXKY..
/
cfe73..
ownership of
36fa7..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMXTX..
/
0cbcb..
ownership of
dd155..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMNAe..
/
6484b..
ownership of
51466..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMcVR..
/
e0cc1..
ownership of
adce2..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMGqn..
/
27a84..
ownership of
db4d4..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMM5C..
/
75a50..
ownership of
a206e..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMYRM..
/
f9e26..
ownership of
368e9..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMcf9..
/
3b3b9..
ownership of
9a5dc..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMSy5..
/
bc0cd..
ownership of
765d4..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMMqZ..
/
dbbb0..
ownership of
caa7a..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMGuT..
/
e0668..
ownership of
57363..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMUYe..
/
a5335..
ownership of
6632f..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJXS..
/
f6c5b..
ownership of
71eb8..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMcSp..
/
771f5..
ownership of
be0ef..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMSqt..
/
6bd72..
ownership of
db29b..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMFb5..
/
dceb2..
ownership of
d7052..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMciq..
/
67603..
ownership of
06330..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMVYM..
/
512db..
ownership of
b891d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMcuR..
/
186e8..
ownership of
58944..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMMYc..
/
e9c78..
ownership of
c0e29..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMXQ4..
/
c00d8..
ownership of
2dc9e..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMPsm..
/
e9cf8..
ownership of
b8e11..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMZcY..
/
878f2..
ownership of
bbb55..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMaXG..
/
5c2f6..
ownership of
daa87..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJdP..
/
05aee..
ownership of
a4bb8..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
PUMZ2..
/
e5633..
doc published by
PrEBh..
Param
MetaAdjunction_strict
MetaAdjunction_strict
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ο
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
MetaCat_initial_p
initial_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
and
(
x0
x4
)
(
∀ x6 .
x0
x6
⟶
and
(
x1
x4
x6
(
x5
x6
)
)
(
∀ x7 .
x1
x4
x6
x7
⟶
x7
=
x5
x6
)
)
Param
MetaFunctor_strict
MetaFunctor_strict
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
ο
Param
MetaFunctor
MetaFunctor
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
ο
Param
MetaNatTrans
MetaNatTrans
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
ο
Param
MetaAdjunction
MetaAdjunction
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ο
Known
29671..
MetaAdjunction_strict_E
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 x13 :
ι → ι
.
MetaAdjunction_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
∀ x14 : ο .
(
MetaFunctor_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
MetaFunctor
x4
x5
x6
x7
x0
x1
x2
x3
x10
x11
⟶
MetaNatTrans
x0
x1
x2
x3
x0
x1
x2
x3
(
λ x15 .
x15
)
(
λ x15 x16 x17 .
x17
)
(
λ x15 .
x10
(
x8
x15
)
)
(
λ x15 x16 x17 .
x11
(
x8
x15
)
(
x8
x16
)
(
x9
x15
x16
x17
)
)
x12
⟶
MetaNatTrans
x4
x5
x6
x7
x4
x5
x6
x7
(
λ x15 .
x8
(
x10
x15
)
)
(
λ x15 x16 x17 .
x9
(
x10
x15
)
(
x10
x16
)
(
x11
x15
x16
x17
)
)
(
λ x15 .
x15
)
(
λ x15 x16 x17 .
x17
)
x13
⟶
MetaAdjunction
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
x14
)
⟶
x14
Known
e6292..
MetaAdjunctionE
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 x13 :
ι → ι
.
MetaAdjunction
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
∀ x14 : ο .
(
(
∀ x15 .
x0
x15
⟶
x7
(
x8
x15
)
(
x8
(
x10
(
x8
x15
)
)
)
(
x8
x15
)
(
x13
(
x8
x15
)
)
(
x9
x15
(
x10
(
x8
x15
)
)
(
x12
x15
)
)
=
x6
(
x8
x15
)
)
⟶
(
∀ x15 .
x4
x15
⟶
x3
(
x10
x15
)
(
x10
(
x8
(
x10
x15
)
)
)
(
x10
x15
)
(
x11
(
x8
(
x10
x15
)
)
x15
(
x13
x15
)
)
(
x12
(
x10
x15
)
)
=
x2
(
x10
x15
)
)
⟶
x14
)
⟶
x14
Param
MetaCat
MetaCat
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Known
95305..
MetaFunctor_strict_E
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
MetaFunctor_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
∀ x10 : ο .
(
MetaCat
x0
x1
x2
x3
⟶
MetaCat
x4
x5
x6
x7
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
x10
)
⟶
x10
Param
MetaFunctor_prop1
idT
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Definition
MetaFunctor_prop2
compT
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 .
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x1
x4
x5
x7
⟶
x1
x5
x6
x8
⟶
x1
x4
x6
(
x3
x4
x5
x6
x8
x7
)
Known
7da4b..
MetaCat_E
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
∀ x4 : ο .
(
MetaFunctor_prop1
x0
x1
x2
x3
⟶
MetaFunctor_prop2
x0
x1
x2
x3
⟶
(
∀ x5 x6 x7 .
x0
x5
⟶
x0
x6
⟶
x1
x5
x6
x7
⟶
x3
x5
x5
x6
x7
(
x2
x5
)
=
x7
)
⟶
(
∀ x5 x6 x7 .
x0
x5
⟶
x0
x6
⟶
x1
x5
x6
x7
⟶
x3
x5
x6
x6
(
x2
x6
)
x7
=
x7
)
⟶
(
∀ x5 x6 x7 x8 x9 x10 x11 .
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x5
x6
x9
⟶
x1
x6
x7
x10
⟶
x1
x7
x8
x11
⟶
x3
x5
x6
x8
(
x3
x6
x7
x8
x11
x10
)
x9
=
x3
x5
x7
x8
x11
(
x3
x5
x6
x7
x10
x9
)
)
⟶
x4
)
⟶
x4
Known
973e2..
MetaFunctorE
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
∀ x10 : ο .
(
(
∀ x11 .
x0
x11
⟶
x4
(
x8
x11
)
)
⟶
(
∀ x11 x12 x13 .
x0
x11
⟶
x0
x12
⟶
x1
x11
x12
x13
⟶
x5
(
x8
x11
)
(
x8
x12
)
(
x9
x11
x12
x13
)
)
⟶
(
∀ x11 .
x0
x11
⟶
x9
x11
x11
(
x2
x11
)
=
x6
(
x8
x11
)
)
⟶
(
∀ x11 x12 x13 x14 x15 .
x0
x11
⟶
x0
x12
⟶
x0
x13
⟶
x1
x11
x12
x14
⟶
x1
x12
x13
x15
⟶
x9
x11
x13
(
x3
x11
x12
x13
x15
x14
)
=
x7
(
x8
x11
)
(
x8
x12
)
(
x8
x13
)
(
x9
x12
x13
x15
)
(
x9
x11
x12
x14
)
)
⟶
x10
)
⟶
x10
Known
aa53a..
MetaNatTransE
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 :
ι → ι
.
MetaNatTrans
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
∀ x13 : ο .
(
(
∀ x14 .
x0
x14
⟶
x5
(
x8
x14
)
(
x10
x14
)
(
x12
x14
)
)
⟶
(
∀ x14 x15 x16 .
x0
x14
⟶
x0
x15
⟶
x1
x14
x15
x16
⟶
x7
(
x8
x14
)
(
x10
x14
)
(
x10
x15
)
(
x11
x14
x15
x16
)
(
x12
x14
)
=
x7
(
x8
x14
)
(
x8
x15
)
(
x10
x15
)
(
x12
x15
)
(
x9
x14
x15
x16
)
)
⟶
x13
)
⟶
x13
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Param
pack_p
pack_p
:
ι
→
(
ι
→
ο
) →
ι
Definition
struct_p
struct_p
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ο
.
x1
(
pack_p
x2
x3
)
)
⟶
x1
x0
Param
UnaryPredHom
Hom_struct_p
:
ι
→
ι
→
ι
→
ο
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Definition
lam_id
lam_id
:=
λ x0 .
lam
x0
(
λ x1 .
x1
)
Param
ap
ap
:
ι
→
ι
→
ι
Definition
struct_id
struct_id
:=
λ x0 .
lam_id
(
ap
x0
0
)
Definition
lam_comp
lam_comp
:=
λ x0 x1 x2 .
lam
x0
(
λ x3 .
ap
x1
(
ap
x2
x3
)
)
Definition
struct_comp
struct_comp
:=
λ x0 x1 x2 .
lam_comp
(
ap
x0
0
)
Known
caa5e..
MetaCat_struct_p
:
MetaCat
struct_p
UnaryPredHom
struct_id
struct_comp
Definition
True
True
:=
∀ x0 : ο .
x0
⟶
x0
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Definition
HomSet
SetHom
:=
λ x0 x1 x2 .
x2
∈
setexp
x1
x0
Known
40bbd..
MetaCat_struct_p_Forgetful
:
MetaFunctor
struct_p
UnaryPredHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
Definition
False
False
:=
∀ x0 : ο .
x0
Known
pack_struct_p_I
pack_struct_p_I
:
∀ x0 .
∀ x1 :
ι → ο
.
struct_p
(
pack_p
x0
x1
)
Known
55fb5..
Hom_struct_p_pack
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
∀ x4 .
UnaryPredHom
(
pack_p
x0
x2
)
(
pack_p
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 .
x6
∈
x0
⟶
x2
x6
⟶
x3
(
ap
x4
x6
)
)
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
Pi_eta
Pi_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
lam
x0
(
ap
x2
)
=
x2
Known
encode_u_ext
encode_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
Definition
MetaCat_terminal_p
terminal_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
and
(
x0
x4
)
(
∀ x6 .
x0
x6
⟶
and
(
x1
x6
x4
(
x5
x6
)
)
(
∀ x7 .
x1
x6
x4
x7
⟶
x7
=
x5
x6
)
)
Param
ordsucc
ordsucc
:
ι
→
ι
Known
pack_p_0_eq2
pack_p_0_eq2
:
∀ x0 .
∀ x1 :
ι → ο
.
x0
=
ap
(
pack_p
x0
x1
)
0
Known
In_0_1
In_0_1
:
0
∈
1
Known
TrueI
TrueI
:
True
Param
Sing
Sing
:
ι
→
ι
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
eq_1_Sing0
eq_1_Sing0
:
1
=
Sing
0
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Known
d6aa5..
MetaAdjunction_strict_I
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 x13 :
ι → ι
.
MetaFunctor_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
MetaFunctor
x4
x5
x6
x7
x0
x1
x2
x3
x10
x11
⟶
MetaNatTrans
x0
x1
x2
x3
x0
x1
x2
x3
(
λ x14 .
x14
)
(
λ x14 x15 x16 .
x16
)
(
λ x14 .
x10
(
x8
x14
)
)
(
λ x14 x15 x16 .
x11
(
x8
x14
)
(
x8
x15
)
(
x9
x14
x15
x16
)
)
x12
⟶
MetaNatTrans
x4
x5
x6
x7
x4
x5
x6
x7
(
λ x14 .
x8
(
x10
x14
)
)
(
λ x14 x15 x16 .
x9
(
x10
x14
)
(
x10
x15
)
(
x11
x14
x15
x16
)
)
(
λ x14 .
x14
)
(
λ x14 x15 x16 .
x16
)
x13
⟶
MetaAdjunction
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
MetaAdjunction_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
Known
5cbb4..
MetaFunctor_strict_I
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
MetaCat
x4
x5
x6
x7
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
MetaFunctor_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
Known
e4125..
MetaCatSet
:
MetaCat
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
Known
2cb62..
MetaFunctorI
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
(
∀ x10 .
x0
x10
⟶
x4
(
x8
x10
)
)
⟶
(
∀ x10 x11 x12 .
x0
x10
⟶
x0
x11
⟶
x1
x10
x11
x12
⟶
x5
(
x8
x10
)
(
x8
x11
)
(
x9
x10
x11
x12
)
)
⟶
(
∀ x10 .
x0
x10
⟶
x9
x10
x10
(
x2
x10
)
=
x6
(
x8
x10
)
)
⟶
(
∀ x10 x11 x12 x13 x14 .
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x1
x10
x11
x13
⟶
x1
x11
x12
x14
⟶
x9
x10
x12
(
x3
x10
x11
x12
x14
x13
)
=
x7
(
x8
x10
)
(
x8
x11
)
(
x8
x12
)
(
x9
x11
x12
x14
)
(
x9
x10
x11
x13
)
)
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
Known
c1d68..
MetaNatTransI
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 :
ι → ι
.
(
∀ x13 .
x0
x13
⟶
x5
(
x8
x13
)
(
x10
x13
)
(
x12
x13
)
)
⟶
(
∀ x13 x14 x15 .
x0
x13
⟶
x0
x14
⟶
x1
x13
x14
x15
⟶
x7
(
x8
x13
)
(
x10
x13
)
(
x10
x14
)
(
x11
x13
x14
x15
)
(
x12
x13
)
=
x7
(
x8
x13
)
(
x8
x14
)
(
x10
x14
)
(
x12
x14
)
(
x9
x13
x14
x15
)
)
⟶
MetaNatTrans
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
Known
lam_id_exp_In
lam_id_exp_In
:
∀ x0 .
lam_id
x0
∈
setexp
x0
x0
Known
lam_comp_id_R
lam_comp_id_R
:
∀ x0 x1 x2 .
x2
∈
setexp
x1
x0
⟶
lam_comp
x0
x2
(
lam_id
x0
)
=
x2
Known
lam_comp_id_L
lam_comp_id_L
:
∀ x0 x1 x2 .
x2
∈
setexp
x1
x0
⟶
lam_comp
x0
(
lam_id
x1
)
x2
=
x2
Known
fd494..
MetaAdjunctionI
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 x13 :
ι → ι
.
(
∀ x14 .
x0
x14
⟶
x7
(
x8
x14
)
(
x8
(
x10
(
x8
x14
)
)
)
(
x8
x14
)
(
x13
(
x8
x14
)
)
(
x9
x14
(
x10
(
x8
x14
)
)
(
x12
x14
)
)
=
x6
(
x8
x14
)
)
⟶
(
∀ x14 .
x4
x14
⟶
x3
(
x10
x14
)
(
x10
(
x8
(
x10
x14
)
)
)
(
x10
x14
)
(
x11
(
x8
(
x10
x14
)
)
x14
(
x13
x14
)
)
(
x12
(
x10
x14
)
)
=
x2
(
x10
x14
)
)
⟶
MetaAdjunction
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
Param
unpack_p_o
unpack_p_o
:
ι
→
(
ι
→
(
ι
→
ο
) →
ο
) →
ο
Definition
PtdPred
struct_p_nonempty
:=
λ x0 .
and
(
struct_p
x0
)
(
unpack_p_o
x0
(
λ x1 .
λ x2 :
ι → ο
.
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
x2
x4
)
⟶
x3
)
⟶
x3
)
)
Definition
iff
iff
:=
λ x0 x1 : ο .
and
(
x0
⟶
x1
)
(
x1
⟶
x0
)
Known
prop_ext_2
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Known
unpack_p_o_eq
unpack_p_o_eq
:
∀ x0 :
ι →
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι → ο
.
(
∀ x3 :
ι → ο
.
(
∀ x4 .
x4
∈
x1
⟶
iff
(
x2
x4
)
(
x3
x4
)
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_p_o
(
pack_p
x1
x2
)
x0
=
x0
x1
x2
Known
aef2e..
MetaCat_struct_p_nonempty
:
MetaCat
PtdPred
UnaryPredHom
struct_id
struct_comp
Known
0322a..
MetaCat_struct_p_nonempty_Forgetful
:
MetaFunctor
PtdPred
UnaryPredHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
Known
neq_0_1
neq_0_1
:
0
=
1
⟶
∀ x0 : ο .
x0
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Known
In_1_2
In_1_2
:
1
∈
2
Known
In_0_2
In_0_2
:
0
∈
2
Known
80cab..
MetaCatSet_initial
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
(
λ x4 .
True
)
HomSet
(
λ x4 .
lam
x4
(
λ x5 .
x5
)
)
(
λ x4 x5 x6 x7 x8 .
lam
x4
(
λ x9 .
ap
x7
(
ap
x8
x9
)
)
)
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Param
pack_e
pack_e
:
ι
→
ι
→
ι
Definition
struct_e
struct_e
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 x3 .
x3
∈
x2
⟶
x1
(
pack_e
x2
x3
)
)
⟶
x1
x0
Param
PtdSetHom
Hom_struct_e
:
ι
→
ι
→
ι
→
ο
Param
unpack_e_i
unpack_e_i
:
ι
→
CT2
ι
Known
unpack_e_i_eq
unpack_e_i_eq
:
∀ x0 :
ι →
ι → ι
.
∀ x1 x2 .
unpack_e_i
(
pack_e
x1
x2
)
x0
=
x0
x1
x2
Known
f65a3..
Hom_struct_e_pack
:
∀ x0 x1 x2 x3 x4 .
PtdSetHom
(
pack_e
x0
x2
)
(
pack_e
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
ap
x4
x2
=
x3
)
Known
pack_e_0_eq2
pack_e_0_eq2
:
∀ x0 x1 .
x0
=
ap
(
pack_e
x0
x1
)
0
Param
pack_r
pack_r
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Definition
struct_r
struct_r
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
x1
(
pack_r
x2
x3
)
)
⟶
x1
x0
Param
BinRelnHom
Hom_struct_r
:
ι
→
ι
→
ι
→
ο
Known
6955f..
MetaCat_struct_r
:
MetaCat
struct_r
BinRelnHom
struct_id
struct_comp
Known
07626..
MetaCat_struct_r_Forgetful
:
MetaFunctor
struct_r
BinRelnHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
Known
pack_struct_r_I
pack_struct_r_I
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
struct_r
(
pack_r
x0
x1
)
Known
c84ab..
Hom_struct_r_pack
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 .
BinRelnHom
(
pack_r
x0
x2
)
(
pack_r
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x2
x6
x7
⟶
x3
(
ap
x4
x6
)
(
ap
x4
x7
)
)
Known
pack_r_0_eq2
pack_r_0_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
x2
x0
(
ap
(
pack_r
x0
x1
)
0
)
⟶
x2
(
ap
(
pack_r
x0
x1
)
0
)
x0
Param
unpack_r_o
unpack_r_o
:
ι
→
(
ι
→
(
ι
→
ι
→
ο
) →
ο
) →
ο
Definition
PER
struct_r_per
:=
λ x0 .
and
(
struct_r
x0
)
(
unpack_r_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ο
.
and
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x5
⟶
x2
x3
x5
)
)
)
Known
unpack_r_o_eq
unpack_r_o_eq
:
∀ x0 :
ι →
(
ι →
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
ι → ο
.
(
∀ x3 :
ι →
ι → ο
.
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
iff
(
x2
x4
x5
)
(
x3
x4
x5
)
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_r_o
(
pack_r
x1
x2
)
x0
=
x0
x1
x2
Known
259fb..
MetaCat_struct_r_per
:
MetaCat
PER
BinRelnHom
struct_id
struct_comp
Known
1b780..
MetaCat_struct_r_per_Forgetful
:
MetaFunctor
PER
BinRelnHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
Definition
EquivReln
struct_r_equivreln
:=
λ x0 .
and
(
struct_r
x0
)
(
unpack_r_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ο
.
and
(
and
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
x3
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x5
⟶
x2
x3
x5
)
)
)
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
ca919..
MetaCat_struct_r_equivreln
:
MetaCat
EquivReln
BinRelnHom
struct_id
struct_comp
Known
a8025..
MetaCat_struct_r_equivreln_Forgetful
:
MetaFunctor
EquivReln
BinRelnHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
Definition
IrreflexiveTransitiveReln
struct_r_partialord
:=
λ x0 .
and
(
struct_r
x0
)
(
unpack_r_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ο
.
and
(
∀ x3 .
x3
∈
x1
⟶
not
(
x2
x3
x3
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x5
⟶
x2
x3
x5
)
)
)
Known
c6620..
MetaCat_struct_r_partialord
:
MetaCat
IrreflexiveTransitiveReln
BinRelnHom
struct_id
struct_comp
Known
c7aa1..
MetaCat_struct_r_partialord_Forgetful
:
MetaFunctor
IrreflexiveTransitiveReln
BinRelnHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
Definition
IrreflexiveSymmetricReln
struct_r_graph
:=
λ x0 .
and
(
struct_r
x0
)
(
unpack_r_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ο
.
and
(
∀ x3 .
x3
∈
x1
⟶
not
(
x2
x3
x3
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
)
)
Known
71675..
MetaCat_struct_r_graph
:
MetaCat
IrreflexiveSymmetricReln
BinRelnHom
struct_id
struct_comp
Known
1299d..
MetaCat_struct_r_graph_Forgetful
:
MetaFunctor
IrreflexiveSymmetricReln
BinRelnHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
Param
pack_c
pack_c
:
ι
→
(
(
ι
→
ο
) →
ο
) →
ι
Definition
struct_c
struct_c
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
x1
(
pack_c
x2
x3
)
)
⟶
x1
x0
Param
PreContinuousHom
Hom_struct_c
:
ι
→
ι
→
ι
→
ο
Known
ed6b5..
MetaCat_struct_c
:
MetaCat
struct_c
PreContinuousHom
struct_id
struct_comp
Known
803c1..
MetaCat_struct_c_Forgetful
:
MetaFunctor
struct_c
PreContinuousHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
Known
pack_struct_c_I
pack_struct_c_I
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
struct_c
(
pack_c
x0
x1
)
Known
pack_c_0_eq2
pack_c_0_eq2
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
x0
=
ap
(
pack_c
x0
x1
)
0
Known
5059f..
Hom_struct_c_pack
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 .
PreContinuousHom
(
pack_c
x0
x2
)
(
pack_c
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
x7
∈
x1
)
⟶
x3
x6
⟶
x2
(
λ x7 .
and
(
x7
∈
x0
)
(
x6
(
ap
x4
x7
)
)
)
)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
90aea..
struct_r_ord
:=
λ x0 .
and
(
struct_r
x0
)
(
unpack_r_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ο
.
and
(
and
(
∀ x3 .
x3
∈
x1
⟶
not
(
x2
x3
x3
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
or
(
x2
x3
x4
)
(
x2
x4
x3
)
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x5
⟶
x2
x3
x5
)
)
)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
daa87..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
unpack_r_o
(
pack_r
x0
x1
)
(
λ x3 .
λ x4 :
ι →
ι → ο
.
and
(
and
(
∀ x5 .
x5
∈
x3
⟶
not
(
x4
x5
x5
)
)
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
or
(
x4
x5
x6
)
(
x4
x6
x5
)
)
)
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
x4
x5
x6
⟶
x4
x6
x7
⟶
x4
x5
x7
)
)
=
and
(
and
(
∀ x3 .
x3
∈
x0
⟶
not
(
x1
x3
x3
)
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
or
(
x1
x3
x4
)
(
x1
x4
x3
)
)
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x1
x3
x4
⟶
x1
x4
x5
⟶
x1
x3
x5
)
(proof)
Theorem
b8e11..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
x0
=
0
⟶
90aea..
(
pack_r
x0
x1
)
(proof)
Known
Empty_eq
Empty_eq
:
∀ x0 .
(
∀ x1 .
nIn
x1
x0
)
⟶
x0
=
0
Theorem
c0e29..
:
∀ x0 .
90aea..
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
x2
=
0
⟶
x1
(
pack_r
x2
x3
)
)
⟶
x1
x0
(proof)
Param
setsum
setsum
:
ι
→
ι
→
ι
Known
lamE
lamE
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x1
x4
)
(
x2
=
setsum
x4
x6
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Param
pair_p
pair_p
:
ι
→
ο
Known
PiI
PiI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
(
∀ x3 .
x3
∈
x2
⟶
and
(
pair_p
x3
)
(
ap
x3
0
∈
x0
)
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
)
⟶
x2
∈
Pi
x0
x1
Theorem
b891d..
:
∀ x0 x1 x2 .
90aea..
x0
⟶
90aea..
x1
⟶
BinRelnHom
x0
x1
x2
=
(
x2
=
0
)
(proof)
Theorem
d7052..
:
∀ x0 x1 x2 .
90aea..
x0
⟶
90aea..
x1
⟶
x2
=
0
⟶
BinRelnHom
x0
x1
x2
(proof)
Theorem
be0ef..
:
∀ x0 x1 .
90aea..
x0
⟶
90aea..
x1
⟶
BinRelnHom
x0
x1
0
(proof)
Theorem
6632f..
:
∀ x0 x1 x2 .
90aea..
x0
⟶
90aea..
x1
⟶
BinRelnHom
x0
x1
x2
⟶
x2
=
0
(proof)
Theorem
caa7a..
:
∀ x0 x1 x2 x3 .
90aea..
x0
⟶
90aea..
x1
⟶
BinRelnHom
x0
x1
x2
⟶
BinRelnHom
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
9a5dc..
:
∀ x0 x1 x2 x3 x4 .
90aea..
x0
⟶
struct_comp
x0
x1
x2
x3
x4
=
0
(proof)
Theorem
a206e..
:
90aea..
(
pack_r
0
(
λ x0 x1 .
False
)
)
(proof)
Theorem
adce2..
MetaCat_struct_r_ord_initial
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
90aea..
BinRelnHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
dd155..
:
MetaCat_terminal_p
90aea..
BinRelnHom
struct_id
struct_comp
(
pack_r
0
(
λ x0 x1 .
False
)
)
(
λ x0 .
0
)
(proof)
Theorem
18ea9..
MetaCat_struct_r_ord_terminal
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
90aea..
BinRelnHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
MetaCat_coproduct_p
coproduct_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 .
λ x9 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x4
x6
x7
)
)
(
x1
x5
x6
x8
)
)
(
∀ x10 .
x0
x10
⟶
∀ x11 x12 .
x1
x4
x10
x11
⟶
x1
x5
x10
x12
⟶
and
(
and
(
and
(
x1
x6
x10
(
x9
x10
x11
x12
)
)
(
x3
x4
x6
x10
(
x9
x10
x11
x12
)
x7
=
x11
)
)
(
x3
x5
x6
x10
(
x9
x10
x11
x12
)
x8
=
x12
)
)
(
∀ x13 .
x1
x6
x10
x13
⟶
x3
x4
x6
x10
x13
x7
=
x11
⟶
x3
x5
x6
x10
x13
x8
=
x12
⟶
x13
=
x9
x10
x11
x12
)
)
Definition
MetaCat_coproduct_constr_p
coproduct_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 .
x0
x8
⟶
x0
x9
⟶
MetaCat_coproduct_p
x0
x1
x2
x3
x8
x9
(
x4
x8
x9
)
(
x5
x8
x9
)
(
x6
x8
x9
)
(
x7
x8
x9
)
Known
and6I
and6I
:
∀ x0 x1 x2 x3 x4 x5 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
Known
and4I
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Theorem
ebfe1..
MetaCat_struct_r_ord_coproduct_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
90aea..
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
MetaCat_product_p
product_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 .
λ x9 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x6
x4
x7
)
)
(
x1
x6
x5
x8
)
)
(
∀ x10 .
x0
x10
⟶
∀ x11 x12 .
x1
x10
x4
x11
⟶
x1
x10
x5
x12
⟶
and
(
and
(
and
(
x1
x10
x6
(
x9
x10
x11
x12
)
)
(
x3
x10
x6
x4
x7
(
x9
x10
x11
x12
)
=
x11
)
)
(
x3
x10
x6
x5
x8
(
x9
x10
x11
x12
)
=
x12
)
)
(
∀ x13 .
x1
x10
x6
x13
⟶
x3
x10
x6
x4
x7
x13
=
x11
⟶
x3
x10
x6
x5
x8
x13
=
x12
⟶
x13
=
x9
x10
x11
x12
)
)
Definition
MetaCat_product_constr_p
product_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 .
x0
x8
⟶
x0
x9
⟶
MetaCat_product_p
x0
x1
x2
x3
x8
x9
(
x4
x8
x9
)
(
x5
x8
x9
)
(
x6
x8
x9
)
(
x7
x8
x9
)
Theorem
06552..
:
MetaCat_product_constr_p
90aea..
BinRelnHom
struct_id
struct_comp
(
λ x0 x1 .
pack_r
0
(
λ x2 x3 .
False
)
)
(
λ x0 x1 .
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 x2 x3 x4 .
0
)
(proof)
Theorem
e28a3..
MetaCat_struct_r_ord_product_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
90aea..
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
MetaCat_coequalizer_p
coequalizer_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 .
λ x10 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x1
x4
x5
x6
)
)
(
x1
x4
x5
x7
)
)
(
x0
x8
)
)
(
x1
x5
x8
x9
)
)
(
x3
x4
x5
x8
x9
x6
=
x3
x4
x5
x8
x9
x7
)
)
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x1
x5
x11
x12
⟶
x3
x4
x5
x11
x12
x6
=
x3
x4
x5
x11
x12
x7
⟶
and
(
and
(
x1
x8
x11
(
x10
x11
x12
)
)
(
x3
x5
x8
x11
(
x10
x11
x12
)
x9
=
x12
)
)
(
∀ x13 .
x1
x8
x11
x13
⟶
x3
x5
x8
x11
x13
x9
=
x12
⟶
x13
=
x10
x11
x12
)
)
Definition
MetaCat_coequalizer_struct_p
coequalizer_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 :
ι →
ι →
ι →
ι → ι
.
λ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 x8 .
x0
x7
⟶
x0
x8
⟶
∀ x9 x10 .
x1
x7
x8
x9
⟶
x1
x7
x8
x10
⟶
MetaCat_coequalizer_p
x0
x1
x2
x3
x7
x8
x9
x10
(
x4
x7
x8
x9
x10
)
(
x5
x7
x8
x9
x10
)
(
x6
x7
x8
x9
x10
)
Known
41253..
and8I
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
⟶
and
(
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
Theorem
df039..
MetaCat_struct_r_ord_coequalizer_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_struct_p
90aea..
BinRelnHom
struct_id
struct_comp
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
MetaCat_equalizer_p
equalizer_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 .
λ x10 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x1
x4
x5
x6
)
)
(
x1
x4
x5
x7
)
)
(
x0
x8
)
)
(
x1
x8
x4
x9
)
)
(
x3
x8
x4
x5
x6
x9
=
x3
x8
x4
x5
x7
x9
)
)
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x1
x11
x4
x12
⟶
x3
x11
x4
x5
x6
x12
=
x3
x11
x4
x5
x7
x12
⟶
and
(
and
(
x1
x11
x8
(
x10
x11
x12
)
)
(
x3
x11
x8
x4
x9
(
x10
x11
x12
)
=
x12
)
)
(
∀ x13 .
x1
x11
x8
x13
⟶
x3
x11
x8
x4
x9
x13
=
x12
⟶
x13
=
x10
x11
x12
)
)
Definition
MetaCat_equalizer_struct_p
equalizer_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 :
ι →
ι →
ι →
ι → ι
.
λ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 x8 .
x0
x7
⟶
x0
x8
⟶
∀ x9 x10 .
x1
x7
x8
x9
⟶
x1
x7
x8
x10
⟶
MetaCat_equalizer_p
x0
x1
x2
x3
x7
x8
x9
x10
(
x4
x7
x8
x9
x10
)
(
x5
x7
x8
x9
x10
)
(
x6
x7
x8
x9
x10
)
Theorem
788ee..
MetaCat_struct_r_ord_equalizer_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
90aea..
BinRelnHom
struct_id
struct_comp
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
MetaCat_pushout_p
pushout_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 x10 x11 .
λ x12 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x6
x4
x7
)
)
(
x1
x6
x5
x8
)
)
(
x0
x9
)
)
(
x1
x4
x9
x10
)
)
(
x1
x5
x9
x11
)
)
(
x3
x6
x4
x9
x10
x7
=
x3
x6
x5
x9
x11
x8
)
)
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x1
x4
x13
x14
⟶
∀ x15 .
x1
x5
x13
x15
⟶
x3
x6
x4
x13
x14
x7
=
x3
x6
x5
x13
x15
x8
⟶
and
(
and
(
and
(
x1
x9
x13
(
x12
x13
x14
x15
)
)
(
x3
x4
x9
x13
(
x12
x13
x14
x15
)
x10
=
x14
)
)
(
x3
x5
x9
x13
(
x12
x13
x14
x15
)
x11
=
x15
)
)
(
∀ x16 .
x1
x9
x13
x16
⟶
x3
x4
x9
x13
x16
x10
=
x14
⟶
x3
x5
x9
x13
x16
x11
=
x15
⟶
x16
=
x12
x13
x14
x15
)
)
Definition
MetaCat_pushout_constr_p
pushout_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 x4 x5 x6 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 x10 .
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
∀ x11 x12 .
x1
x10
x8
x11
⟶
x1
x10
x9
x12
⟶
MetaCat_pushout_p
x0
x1
x2
x3
x8
x9
x10
x11
x12
(
x4
x8
x9
x10
x11
x12
)
(
x5
x8
x9
x10
x11
x12
)
(
x6
x8
x9
x10
x11
x12
)
(
x7
x8
x9
x10
x11
x12
)
Known
19e22..
and10I
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
⟶
x8
⟶
x9
⟶
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
)
x8
)
x9
Theorem
e5c69..
MetaCat_struct_r_ord_pushout_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_constr_p
90aea..
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
MetaCat_pullback_p
pullback_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 x10 x11 .
λ x12 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x4
x6
x7
)
)
(
x1
x5
x6
x8
)
)
(
x0
x9
)
)
(
x1
x9
x4
x10
)
)
(
x1
x9
x5
x11
)
)
(
x3
x9
x4
x6
x7
x10
=
x3
x9
x5
x6
x8
x11
)
)
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x1
x13
x4
x14
⟶
∀ x15 .
x1
x13
x5
x15
⟶
x3
x13
x4
x6
x7
x14
=
x3
x13
x5
x6
x8
x15
⟶
and
(
and
(
and
(
x1
x13
x9
(
x12
x13
x14
x15
)
)
(
x3
x13
x9
x4
x10
(
x12
x13
x14
x15
)
=
x14
)
)
(
x3
x13
x9
x5
x11
(
x12
x13
x14
x15
)
=
x15
)
)
(
∀ x16 .
x1
x13
x9
x16
⟶
x3
x13
x9
x4
x10
x16
=
x14
⟶
x3
x13
x9
x5
x11
x16
=
x15
⟶
x16
=
x12
x13
x14
x15
)
)
Definition
MetaCat_pullback_struct_p
pullback_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 x4 x5 x6 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 x10 .
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
∀ x11 x12 .
x1
x8
x10
x11
⟶
x1
x9
x10
x12
⟶
MetaCat_pullback_p
x0
x1
x2
x3
x8
x9
x10
x11
x12
(
x4
x8
x9
x10
x11
x12
)
(
x5
x8
x9
x10
x11
x12
)
(
x6
x8
x9
x10
x11
x12
)
(
x7
x8
x9
x10
x11
x12
)
Theorem
95edd..
MetaCat_struct_r_ord_pullback_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_struct_p
90aea..
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
MetaCat_exp_p
exponent_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x8 x9 x10 x11 .
λ x12 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
x0
x8
)
(
x0
x9
)
)
(
x0
x10
)
)
(
x1
(
x4
x10
x8
)
x9
x11
)
)
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x1
(
x4
x13
x8
)
x9
x14
⟶
and
(
and
(
x1
x13
x10
(
x12
x13
x14
)
)
(
x3
(
x4
x13
x8
)
(
x4
x10
x8
)
x9
x11
(
x7
x10
x8
(
x4
x13
x8
)
(
x3
(
x4
x13
x8
)
x13
x10
(
x12
x13
x14
)
(
x5
x13
x8
)
)
(
x6
x13
x8
)
)
=
x14
)
)
(
∀ x15 .
x1
x13
x10
x15
⟶
x3
(
x4
x13
x8
)
(
x4
x10
x8
)
x9
x11
(
x7
x10
x8
(
x4
x13
x8
)
(
x3
(
x4
x13
x8
)
x13
x10
x15
(
x5
x13
x8
)
)
(
x6
x13
x8
)
)
=
x14
⟶
x15
=
x12
x13
x14
)
)
Definition
MetaCat_exp_constr_p
product_exponent_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x8 x9 :
ι →
ι → ι
.
λ x10 :
ι →
ι →
ι →
ι → ι
.
and
(
MetaCat_product_constr_p
x0
x1
x2
x3
x4
x5
x6
x7
)
(
∀ x11 x12 .
x0
x11
⟶
x0
x12
⟶
MetaCat_exp_p
x0
x1
x2
x3
x4
x5
x6
x7
x11
x12
(
x8
x11
x12
)
(
x9
x11
x12
)
(
x10
x11
x12
)
)
Known
and5I
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
Theorem
d432e..
MetaCat_struct_r_ord_product_exponent
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι → ι
.
(
∀ x12 : ο .
(
∀ x13 :
ι →
ι →
ι →
ι → ι
.
MetaCat_exp_constr_p
90aea..
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
x9
x11
x13
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
MetaCat_monic_p
monic
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 .
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x1
x4
x5
x6
)
)
(
∀ x7 .
x0
x7
⟶
∀ x8 x9 .
x1
x7
x4
x8
⟶
x1
x7
x4
x9
⟶
x3
x7
x4
x5
x6
x8
=
x3
x7
x4
x5
x6
x9
⟶
x8
=
x9
)
Definition
MetaCat_subobject_classifier_p
subobject_classifier_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
λ x6 x7 .
λ x8 :
ι →
ι →
ι → ι
.
λ x9 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
and
(
and
(
and
(
MetaCat_terminal_p
x0
x1
x2
x3
x4
x5
)
(
x0
x6
)
)
(
x1
x4
x6
x7
)
)
(
∀ x10 x11 x12 .
MetaCat_monic_p
x0
x1
x2
x3
x10
x11
x12
⟶
and
(
x1
x11
x6
(
x8
x10
x11
x12
)
)
(
MetaCat_pullback_p
x0
x1
x2
x3
x4
x11
x6
x7
(
x8
x10
x11
x12
)
x10
(
x5
x10
)
x12
(
x9
x10
x11
x12
)
)
)
Theorem
568d6..
MetaCat_struct_r_ord_subobject_classifier
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_subobject_classifier_p
90aea..
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
MetaCat_nno_p
nno_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
λ x6 x7 x8 .
λ x9 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
MetaCat_terminal_p
x0
x1
x2
x3
x4
x5
)
(
x0
x6
)
)
(
x1
x4
x6
x7
)
)
(
x1
x6
x6
x8
)
)
(
∀ x10 x11 x12 .
x0
x10
⟶
x1
x4
x10
x11
⟶
x1
x10
x10
x12
⟶
and
(
and
(
and
(
x1
x6
x10
(
x9
x10
x11
x12
)
)
(
x3
x4
x6
x10
(
x9
x10
x11
x12
)
x7
=
x11
)
)
(
x3
x6
x6
x10
(
x9
x10
x11
x12
)
x8
=
x3
x6
x10
x10
x12
(
x9
x10
x11
x12
)
)
)
(
∀ x13 .
x1
x6
x10
x13
⟶
x3
x4
x6
x10
x13
x7
=
x11
⟶
x3
x6
x6
x10
x13
x8
=
x3
x6
x10
x10
x12
x13
⟶
x13
=
x9
x10
x11
x12
)
)
Theorem
1a527..
MetaCat_struct_r_ord_nno
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 .
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι → ι
.
MetaCat_nno_p
90aea..
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
0eec1..
:
not
(
∀ x0 : ο .
(
∀ x1 :
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι → ι
.
MetaAdjunction_strict
(
λ x8 .
True
)
HomSet
lam_id
(
λ x8 x9 x10 .
lam_comp
x8
)
90aea..
BinRelnHom
struct_id
struct_comp
x1
x3
(
λ x8 .
ap
x8
0
)
(
λ x8 x9 x10 .
x10
)
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
)
(proof)
Definition
8b17e..
struct_r_wellord
:=
λ x0 .
and
(
struct_r
x0
)
(
unpack_r_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ο
.
and
(
and
(
and
(
∀ x3 .
x3
∈
x1
⟶
not
(
x2
x3
x3
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
or
(
x2
x3
x4
)
(
x2
x4
x3
)
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x5
⟶
x2
x3
x5
)
)
(
∀ x3 :
ι → ο
.
(
∀ x4 .
x4
∈
x1
⟶
(
∀ x5 .
x5
∈
x1
⟶
x2
x5
x4
⟶
x3
x5
)
⟶
x3
x4
)
⟶
∀ x4 .
x4
∈
x1
⟶
x3
x4
)
)
)
Theorem
a6627..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
unpack_r_o
(
pack_r
x0
x1
)
(
λ x3 .
λ x4 :
ι →
ι → ο
.
and
(
and
(
and
(
∀ x5 .
x5
∈
x3
⟶
not
(
x4
x5
x5
)
)
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
or
(
x4
x5
x6
)
(
x4
x6
x5
)
)
)
(
∀ x5 .
x5
∈
x3
⟶
∀ x6 .
x6
∈
x3
⟶
∀ x7 .
x7
∈
x3
⟶
x4
x5
x6
⟶
x4
x6
x7
⟶
x4
x5
x7
)
)
(
∀ x5 :
ι → ο
.
(
∀ x6 .
x6
∈
x3
⟶
(
∀ x7 .
x7
∈
x3
⟶
x4
x7
x6
⟶
x5
x7
)
⟶
x5
x6
)
⟶
∀ x6 .
x6
∈
x3
⟶
x5
x6
)
)
=
and
(
and
(
and
(
∀ x3 .
x3
∈
x0
⟶
not
(
x1
x3
x3
)
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
or
(
x1
x3
x4
)
(
x1
x4
x3
)
)
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x1
x3
x4
⟶
x1
x4
x5
⟶
x1
x3
x5
)
)
(
∀ x3 :
ι → ο
.
(
∀ x4 .
x4
∈
x0
⟶
(
∀ x5 .
x5
∈
x0
⟶
x1
x5
x4
⟶
x3
x5
)
⟶
x3
x4
)
⟶
∀ x4 .
x4
∈
x0
⟶
x3
x4
)
(proof)
Theorem
71a48..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
x0
=
0
⟶
8b17e..
(
pack_r
x0
x1
)
(proof)
Theorem
700c1..
:
∀ x0 .
8b17e..
x0
⟶
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
x2
=
0
⟶
x1
(
pack_r
x2
x3
)
)
⟶
x1
x0
(proof)
Theorem
e6e14..
:
∀ x0 x1 x2 .
8b17e..
x0
⟶
8b17e..
x1
⟶
BinRelnHom
x0
x1
x2
=
(
x2
=
0
)
(proof)
Theorem
19844..
:
∀ x0 x1 x2 .
8b17e..
x0
⟶
8b17e..
x1
⟶
x2
=
0
⟶
BinRelnHom
x0
x1
x2
(proof)
Theorem
66e9d..
:
∀ x0 x1 .
8b17e..
x0
⟶
8b17e..
x1
⟶
BinRelnHom
x0
x1
0
(proof)
Theorem
68a11..
:
∀ x0 x1 x2 .
8b17e..
x0
⟶
8b17e..
x1
⟶
BinRelnHom
x0
x1
x2
⟶
x2
=
0
(proof)
Theorem
c3477..
:
∀ x0 x1 x2 x3 .
8b17e..
x0
⟶
8b17e..
x1
⟶
BinRelnHom
x0
x1
x2
⟶
BinRelnHom
x0
x1
x3
⟶
x2
=
x3
(proof)
Theorem
0dd18..
:
∀ x0 x1 x2 x3 x4 .
8b17e..
x0
⟶
struct_comp
x0
x1
x2
x3
x4
=
0
(proof)
Theorem
54f6a..
:
8b17e..
(
pack_r
0
(
λ x0 x1 .
False
)
)
(proof)
Theorem
105dd..
MetaCat_struct_r_wellord_initial
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
8b17e..
BinRelnHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
71659..
:
MetaCat_terminal_p
8b17e..
BinRelnHom
struct_id
struct_comp
(
pack_r
0
(
λ x0 x1 .
False
)
)
(
λ x0 .
0
)
(proof)
Theorem
49763..
MetaCat_struct_r_wellord_terminal
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_terminal_p
8b17e..
BinRelnHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
17458..
MetaCat_struct_r_wellord_coproduct_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
8b17e..
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
b2d5d..
:
MetaCat_product_constr_p
8b17e..
BinRelnHom
struct_id
struct_comp
(
λ x0 x1 .
pack_r
0
(
λ x2 x3 .
False
)
)
(
λ x0 x1 .
0
)
(
λ x0 x1 .
0
)
(
λ x0 x1 x2 x3 x4 .
0
)
(proof)
Theorem
71d59..
MetaCat_struct_r_wellord_product_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
8b17e..
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
10b92..
MetaCat_struct_r_wellord_coequalizer_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_struct_p
8b17e..
BinRelnHom
struct_id
struct_comp
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
d27a8..
MetaCat_struct_r_wellord_equalizer_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
8b17e..
BinRelnHom
struct_id
struct_comp
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
d4e5c..
MetaCat_struct_r_wellord_pushout_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_constr_p
8b17e..
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
ee3b3..
MetaCat_struct_r_wellord_pullback_constr
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_struct_p
8b17e..
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
9460d..
MetaCat_struct_r_wellord_product_exponent
:
∀ x0 : ο .
(
∀ x1 :
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι → ι
.
(
∀ x12 : ο .
(
∀ x13 :
ι →
ι →
ι →
ι → ι
.
MetaCat_exp_constr_p
8b17e..
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
x9
x11
x13
⟶
x12
)
⟶
x12
)
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
d2cf4..
MetaCat_struct_r_wellord_subobject_classifier
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 :
ι →
ι →
ι → ι
.
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_subobject_classifier_p
8b17e..
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
d6d09..
MetaCat_struct_r_wellord_nno
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 .
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι → ι
.
MetaCat_nno_p
8b17e..
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Theorem
2fd7e..
:
not
(
∀ x0 : ο .
(
∀ x1 :
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι → ι
.
MetaAdjunction_strict
(
λ x8 .
True
)
HomSet
lam_id
(
λ x8 x9 x10 .
lam_comp
x8
)
8b17e..
BinRelnHom
struct_id
struct_comp
x1
x3
(
λ x8 .
ap
x8
0
)
(
λ x8 x9 x10 .
x10
)
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
)
(proof)