Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrKgQ../68407..
PUQTo../85f1c..
vout
PrKgQ../7fbe6.. 0.18 bars
TMV88../e7b39.. negprop ownership controlledby PrEBh.. upto 0
TMNDj../6da86.. negprop ownership controlledby PrEBh.. upto 0
TMUje../12ac6.. ownership of 2fd7e.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMRQ7../7a2c0.. ownership of 6cc20.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMVof../d8690.. ownership of d6d09.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMUsF../97edd.. ownership of 75815.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMGyk../53262.. ownership of d2cf4.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMWtW../fce9e.. ownership of 7fa73.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMRkT../e3460.. ownership of 9460d.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMYvc../a859c.. ownership of 44f22.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMYWe../feec8.. ownership of ee3b3.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMdQB../76010.. ownership of fced6.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMZE2../4028d.. ownership of d4e5c.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMZ3D../beec1.. ownership of c1d3d.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMTdC../50960.. ownership of d27a8.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMT3E../c398d.. ownership of 1016d.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMNVd../095b3.. ownership of 10b92.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMQmD../4eb6f.. ownership of 3692d.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMJs2../f823a.. ownership of 71d59.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMPSH../35e51.. ownership of 08880.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMJ39../e5e13.. ownership of b2d5d.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMQUE../a5c5b.. ownership of 019eb.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMNQo../8021e.. ownership of 17458.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMQRG../e37cf.. ownership of 70ffe.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMViF../76326.. ownership of 49763.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMb1z../02367.. ownership of 7e884.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMShn../ee9e5.. ownership of 71659.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMbgV../d1f90.. ownership of 5bb34.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMFnS../8e8ec.. ownership of 105dd.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMJXQ../4e172.. ownership of 6b40b.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMXZe../5043b.. ownership of 54f6a.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMPMu../05262.. ownership of 4ed7a.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMc3z../0fcdd.. ownership of 0dd18.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMFoW../b5455.. ownership of 85563.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMSNB../403d5.. ownership of c3477.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMdWB../9be9b.. ownership of c951e.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMXBC../09779.. ownership of 68a11.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMYNa../01912.. ownership of 72cb3.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMFbU../fd378.. ownership of 66e9d.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMYSE../d6b06.. ownership of 5d29d.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMJuo../c7742.. ownership of 19844.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMP8q../9b3c3.. ownership of a83a3.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMLS1../636c4.. ownership of e6e14.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMd8V../13aec.. ownership of 0f872.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMbC8../93caa.. ownership of 700c1.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMJzq../e2a9c.. ownership of e4a7e.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMZmG../e5899.. ownership of 71a48.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMaxB../e806a.. ownership of 5bd83.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMSTp../1855b.. ownership of a6627.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMNHV../f2d50.. ownership of 34cda.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMTTi../4d02f.. ownership of 0eec1.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMLjt../9475c.. ownership of 91e83.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMVDx../3f404.. ownership of 1a527.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMGVM../5ce8f.. ownership of 33e34.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMPfT../4faa9.. ownership of 568d6.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMPez../d5538.. ownership of 0443f.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMXGs../58a26.. ownership of d432e.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMPE4../6fe35.. ownership of 3db46.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMX6g../a7c30.. ownership of 95edd.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMLFp../43fca.. ownership of 8a70d.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMV1M../5c738.. ownership of e5c69.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMbHj../c6c5c.. ownership of a6222.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMPbx../f04db.. ownership of 788ee.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMZzJ../d0df0.. ownership of c3148.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMaZN../bd982.. ownership of df039.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMJxX../09895.. ownership of 95501.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMQQd../26ad6.. ownership of e28a3.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMQx6../22be3.. ownership of e6c1f.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMGqQ../7a066.. ownership of 06552.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMFWC../f6ac1.. ownership of bab06.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMJAh../d6ed2.. ownership of ebfe1.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMS2t../fa742.. ownership of cc324.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMMV2../e2350.. ownership of 18ea9.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMXKY../cfe73.. ownership of 36fa7.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMXTX../0cbcb.. ownership of dd155.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMNAe../6484b.. ownership of 51466.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMcVR../e0cc1.. ownership of adce2.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMGqn../27a84.. ownership of db4d4.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMM5C../75a50.. ownership of a206e.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMYRM../f9e26.. ownership of 368e9.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMcf9../3b3b9.. ownership of 9a5dc.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMSy5../bc0cd.. ownership of 765d4.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMMqZ../dbbb0.. ownership of caa7a.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMGuT../e0668.. ownership of 57363.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMUYe../a5335.. ownership of 6632f.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMJXS../f6c5b.. ownership of 71eb8.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMcSp../771f5.. ownership of be0ef.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMSqt../6bd72.. ownership of db29b.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMFb5../dceb2.. ownership of d7052.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMciq../67603.. ownership of 06330.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMVYM../512db.. ownership of b891d.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMcuR../186e8.. ownership of 58944.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMMYc../e9c78.. ownership of c0e29.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMXQ4../c00d8.. ownership of 2dc9e.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMPsm../e9cf8.. ownership of b8e11.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMZcY../878f2.. ownership of bbb55.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMaXG../5c2f6.. ownership of daa87.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
TMJdP../05aee.. ownership of a4bb8.. as prop with payaddr PrEBh.. rightscost 0.00 controlledby PrEBh.. upto 0
PUMZ2../e5633.. doc published by PrEBh..
Param MetaAdjunction_strictMetaAdjunction_strict : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → (ιι) → (ιιιι) → (ιι) → (ιι) → ο
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition MetaCat_initial_pinitial_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . and (x0 x4) (∀ x6 . x0 x6and (x1 x4 x6 (x5 x6)) (∀ x7 . x1 x4 x6 x7x7 = x5 x6))
Param MetaFunctor_strictMetaFunctor_strict : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → ο
Param MetaFunctorMetaFunctor : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → ο
Param MetaNatTransMetaNatTrans : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → (ιι) → (ιιιι) → (ιι) → ο
Param MetaAdjunctionMetaAdjunction : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → (ιι) → (ιιιι) → (ιι) → (ιι) → ο
Known 29671..MetaAdjunction_strict_E : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 x13 : ι → ι . MetaAdjunction_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13∀ x14 : ο . (MetaFunctor_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9MetaFunctor x4 x5 x6 x7 x0 x1 x2 x3 x10 x11MetaNatTrans x0 x1 x2 x3 x0 x1 x2 x3 (λ x15 . x15) (λ x15 x16 x17 . x17) (λ x15 . x10 (x8 x15)) (λ x15 x16 x17 . x11 (x8 x15) (x8 x16) (x9 x15 x16 x17)) x12MetaNatTrans x4 x5 x6 x7 x4 x5 x6 x7 (λ x15 . x8 (x10 x15)) (λ x15 x16 x17 . x9 (x10 x15) (x10 x16) (x11 x15 x16 x17)) (λ x15 . x15) (λ x15 x16 x17 . x17) x13MetaAdjunction x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13x14)x14
Known e6292..MetaAdjunctionE : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 x13 : ι → ι . MetaAdjunction x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13∀ x14 : ο . ((∀ x15 . x0 x15x7 (x8 x15) (x8 (x10 (x8 x15))) (x8 x15) (x13 (x8 x15)) (x9 x15 (x10 (x8 x15)) (x12 x15)) = x6 (x8 x15))(∀ x15 . x4 x15x3 (x10 x15) (x10 (x8 (x10 x15))) (x10 x15) (x11 (x8 (x10 x15)) x15 (x13 x15)) (x12 (x10 x15)) = x2 (x10 x15))x14)x14
Param MetaCatMetaCat : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Known 95305..MetaFunctor_strict_E : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . MetaFunctor_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9∀ x10 : ο . (MetaCat x0 x1 x2 x3MetaCat x4 x5 x6 x7MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9x10)x10
Param MetaFunctor_prop1idT : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Definition MetaFunctor_prop2compT := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 x5 x6 x7 x8 . x0 x4x0 x5x0 x6x1 x4 x5 x7x1 x5 x6 x8x1 x4 x6 (x3 x4 x5 x6 x8 x7)
Known 7da4b..MetaCat_E : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . MetaCat x0 x1 x2 x3∀ x4 : ο . (MetaFunctor_prop1 x0 x1 x2 x3MetaFunctor_prop2 x0 x1 x2 x3(∀ x5 x6 x7 . x0 x5x0 x6x1 x5 x6 x7x3 x5 x5 x6 x7 (x2 x5) = x7)(∀ x5 x6 x7 . x0 x5x0 x6x1 x5 x6 x7x3 x5 x6 x6 (x2 x6) x7 = x7)(∀ x5 x6 x7 x8 x9 x10 x11 . x0 x5x0 x6x0 x7x0 x8x1 x5 x6 x9x1 x6 x7 x10x1 x7 x8 x11x3 x5 x6 x8 (x3 x6 x7 x8 x11 x10) x9 = x3 x5 x7 x8 x11 (x3 x5 x6 x7 x10 x9))x4)x4
Known 973e2..MetaFunctorE : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9∀ x10 : ο . ((∀ x11 . x0 x11x4 (x8 x11))(∀ x11 x12 x13 . x0 x11x0 x12x1 x11 x12 x13x5 (x8 x11) (x8 x12) (x9 x11 x12 x13))(∀ x11 . x0 x11x9 x11 x11 (x2 x11) = x6 (x8 x11))(∀ x11 x12 x13 x14 x15 . x0 x11x0 x12x0 x13x1 x11 x12 x14x1 x12 x13 x15x9 x11 x13 (x3 x11 x12 x13 x15 x14) = x7 (x8 x11) (x8 x12) (x8 x13) (x9 x12 x13 x15) (x9 x11 x12 x14))x10)x10
Known aa53a..MetaNatTransE : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 : ι → ι . MetaNatTrans x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12∀ x13 : ο . ((∀ x14 . x0 x14x5 (x8 x14) (x10 x14) (x12 x14))(∀ x14 x15 x16 . x0 x14x0 x15x1 x14 x15 x16x7 (x8 x14) (x10 x14) (x10 x15) (x11 x14 x15 x16) (x12 x14) = x7 (x8 x14) (x8 x15) (x10 x15) (x12 x15) (x9 x14 x15 x16))x13)x13
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Param pack_ppack_p : ι(ιο) → ι
Definition struct_pstruct_p := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ο . x1 (pack_p x2 x3))x1 x0
Param UnaryPredHomHom_struct_p : ιιιο
Param lamSigma : ι(ιι) → ι
Definition lam_idlam_id := λ x0 . lam x0 (λ x1 . x1)
Param apap : ιιι
Definition struct_idstruct_id := λ x0 . lam_id (ap x0 0)
Definition lam_complam_comp := λ x0 x1 x2 . lam x0 (λ x3 . ap x1 (ap x2 x3))
Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)
Known caa5e..MetaCat_struct_p : MetaCat struct_p UnaryPredHom struct_id struct_comp
Definition TrueTrue := ∀ x0 : ο . x0x0
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Definition HomSetSetHom := λ x0 x1 x2 . x2setexp x1 x0
Known 40bbd..MetaCat_struct_p_Forgetful : MetaFunctor struct_p UnaryPredHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
Definition FalseFalse := ∀ x0 : ο . x0
Known pack_struct_p_Ipack_struct_p_I : ∀ x0 . ∀ x1 : ι → ο . struct_p (pack_p x0 x1)
Known 55fb5..Hom_struct_p_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ο . ∀ x4 . UnaryPredHom (pack_p x0 x2) (pack_p x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0x2 x6x3 (ap x4 x6))
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known Pi_etaPi_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1lam x0 (ap x2) = x2
Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)lam x0 x1 = lam x0 x2
Definition MetaCat_terminal_pterminal_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . and (x0 x4) (∀ x6 . x0 x6and (x1 x6 x4 (x5 x6)) (∀ x7 . x1 x6 x4 x7x7 = x5 x6))
Param ordsuccordsucc : ιι
Known pack_p_0_eq2pack_p_0_eq2 : ∀ x0 . ∀ x1 : ι → ο . x0 = ap (pack_p x0 x1) 0
Known In_0_1In_0_1 : 01
Known TrueITrueI : True
Param SingSing : ιι
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known eq_1_Sing0eq_1_Sing0 : 1 = Sing 0
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Known d6aa5..MetaAdjunction_strict_I : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 x13 : ι → ι . MetaFunctor_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9MetaFunctor x4 x5 x6 x7 x0 x1 x2 x3 x10 x11MetaNatTrans x0 x1 x2 x3 x0 x1 x2 x3 (λ x14 . x14) (λ x14 x15 x16 . x16) (λ x14 . x10 (x8 x14)) (λ x14 x15 x16 . x11 (x8 x14) (x8 x15) (x9 x14 x15 x16)) x12MetaNatTrans x4 x5 x6 x7 x4 x5 x6 x7 (λ x14 . x8 (x10 x14)) (λ x14 x15 x16 . x9 (x10 x14) (x10 x15) (x11 x14 x15 x16)) (λ x14 . x14) (λ x14 x15 x16 . x16) x13MetaAdjunction x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13MetaAdjunction_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13
Known 5cbb4..MetaFunctor_strict_I : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . MetaCat x0 x1 x2 x3MetaCat x4 x5 x6 x7MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9MetaFunctor_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9
Known e4125..MetaCatSet : MetaCat (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0)
Known 2cb62..MetaFunctorI : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . (∀ x10 . x0 x10x4 (x8 x10))(∀ x10 x11 x12 . x0 x10x0 x11x1 x10 x11 x12x5 (x8 x10) (x8 x11) (x9 x10 x11 x12))(∀ x10 . x0 x10x9 x10 x10 (x2 x10) = x6 (x8 x10))(∀ x10 x11 x12 x13 x14 . x0 x10x0 x11x0 x12x1 x10 x11 x13x1 x11 x12 x14x9 x10 x12 (x3 x10 x11 x12 x14 x13) = x7 (x8 x10) (x8 x11) (x8 x12) (x9 x11 x12 x14) (x9 x10 x11 x13))MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9
Known c1d68..MetaNatTransI : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 : ι → ι . (∀ x13 . x0 x13x5 (x8 x13) (x10 x13) (x12 x13))(∀ x13 x14 x15 . x0 x13x0 x14x1 x13 x14 x15x7 (x8 x13) (x10 x13) (x10 x14) (x11 x13 x14 x15) (x12 x13) = x7 (x8 x13) (x8 x14) (x10 x14) (x12 x14) (x9 x13 x14 x15))MetaNatTrans x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12
Known lam_id_exp_Inlam_id_exp_In : ∀ x0 . lam_id x0setexp x0 x0
Known lam_comp_id_Rlam_comp_id_R : ∀ x0 x1 x2 . x2setexp x1 x0lam_comp x0 x2 (lam_id x0) = x2
Known lam_comp_id_Llam_comp_id_L : ∀ x0 x1 x2 . x2setexp x1 x0lam_comp x0 (lam_id x1) x2 = x2
Known fd494..MetaAdjunctionI : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 x13 : ι → ι . (∀ x14 . x0 x14x7 (x8 x14) (x8 (x10 (x8 x14))) (x8 x14) (x13 (x8 x14)) (x9 x14 (x10 (x8 x14)) (x12 x14)) = x6 (x8 x14))(∀ x14 . x4 x14x3 (x10 x14) (x10 (x8 (x10 x14))) (x10 x14) (x11 (x8 (x10 x14)) x14 (x13 x14)) (x12 (x10 x14)) = x2 (x10 x14))MetaAdjunction x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13
Param unpack_p_ounpack_p_o : ι(ι(ιο) → ο) → ο
Definition PtdPredstruct_p_nonempty := λ x0 . and (struct_p x0) (unpack_p_o x0 (λ x1 . λ x2 : ι → ο . ∀ x3 : ο . (∀ x4 . and (x4x1) (x2 x4)x3)x3))
Definition iffiff := λ x0 x1 : ο . and (x0x1) (x1x0)
Known prop_ext_2prop_ext_2 : ∀ x0 x1 : ο . (x0x1)(x1x0)x0 = x1
Known unpack_p_o_equnpack_p_o_eq : ∀ x0 : ι → (ι → ο) → ο . ∀ x1 . ∀ x2 : ι → ο . (∀ x3 : ι → ο . (∀ x4 . x4x1iff (x2 x4) (x3 x4))x0 x1 x3 = x0 x1 x2)unpack_p_o (pack_p x1 x2) x0 = x0 x1 x2
Known aef2e..MetaCat_struct_p_nonempty : MetaCat PtdPred UnaryPredHom struct_id struct_comp
Known 0322a..MetaCat_struct_p_nonempty_Forgetful : MetaFunctor PtdPred UnaryPredHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
Known neq_0_1neq_0_1 : 0 = 1∀ x0 : ο . x0
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Known In_1_2In_1_2 : 12
Known In_0_2In_0_2 : 02
Known 80cab..MetaCatSet_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p (λ x4 . True) HomSet (λ x4 . lam x4 (λ x5 . x5)) (λ x4 x5 x6 x7 x8 . lam x4 (λ x9 . ap x7 (ap x8 x9))) x1 x3x2)x2)x0)x0
Param pack_epack_e : ιιι
Definition struct_estruct_e := λ x0 . ∀ x1 : ι → ο . (∀ x2 x3 . x3x2x1 (pack_e x2 x3))x1 x0
Param PtdSetHomHom_struct_e : ιιιο
Param unpack_e_iunpack_e_i : ιCT2 ι
Known unpack_e_i_equnpack_e_i_eq : ∀ x0 : ι → ι → ι . ∀ x1 x2 . unpack_e_i (pack_e x1 x2) x0 = x0 x1 x2
Known f65a3..Hom_struct_e_pack : ∀ x0 x1 x2 x3 x4 . PtdSetHom (pack_e x0 x2) (pack_e x1 x3) x4 = and (x4setexp x1 x0) (ap x4 x2 = x3)
Known pack_e_0_eq2pack_e_0_eq2 : ∀ x0 x1 . x0 = ap (pack_e x0 x1) 0
Param pack_rpack_r : ι(ιιο) → ι
Definition struct_rstruct_r := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ο . x1 (pack_r x2 x3))x1 x0
Param BinRelnHomHom_struct_r : ιιιο
Known 6955f..MetaCat_struct_r : MetaCat struct_r BinRelnHom struct_id struct_comp
Known 07626..MetaCat_struct_r_Forgetful : MetaFunctor struct_r BinRelnHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
Known pack_struct_r_Ipack_struct_r_I : ∀ x0 . ∀ x1 : ι → ι → ο . struct_r (pack_r x0 x1)
Known c84ab..Hom_struct_r_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ο . ∀ x4 . BinRelnHom (pack_r x0 x2) (pack_r x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0∀ x7 . x7x0x2 x6 x7x3 (ap x4 x6) (ap x4 x7))
Known pack_r_0_eq2pack_r_0_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ο . x2 x0 (ap (pack_r x0 x1) 0)x2 (ap (pack_r x0 x1) 0) x0
Param unpack_r_ounpack_r_o : ι(ι(ιιο) → ο) → ο
Definition PERstruct_r_per := λ x0 . and (struct_r x0) (unpack_r_o x0 (λ x1 . λ x2 : ι → ι → ο . and (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3) (∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1x2 x3 x4x2 x4 x5x2 x3 x5)))
Known unpack_r_o_equnpack_r_o_eq : ∀ x0 : ι → (ι → ι → ο) → ο . ∀ x1 . ∀ x2 : ι → ι → ο . (∀ x3 : ι → ι → ο . (∀ x4 . x4x1∀ x5 . x5x1iff (x2 x4 x5) (x3 x4 x5))x0 x1 x3 = x0 x1 x2)unpack_r_o (pack_r x1 x2) x0 = x0 x1 x2
Known 259fb..MetaCat_struct_r_per : MetaCat PER BinRelnHom struct_id struct_comp
Known 1b780..MetaCat_struct_r_per_Forgetful : MetaFunctor PER BinRelnHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
Definition EquivRelnstruct_r_equivreln := λ x0 . and (struct_r x0) (unpack_r_o x0 (λ x1 . λ x2 : ι → ι → ο . and (and (∀ x3 . x3x1x2 x3 x3) (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)) (∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1x2 x3 x4x2 x4 x5x2 x3 x5)))
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known ca919..MetaCat_struct_r_equivreln : MetaCat EquivReln BinRelnHom struct_id struct_comp
Known a8025..MetaCat_struct_r_equivreln_Forgetful : MetaFunctor EquivReln BinRelnHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
Definition IrreflexiveTransitiveRelnstruct_r_partialord := λ x0 . and (struct_r x0) (unpack_r_o x0 (λ x1 . λ x2 : ι → ι → ο . and (∀ x3 . x3x1not (x2 x3 x3)) (∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1x2 x3 x4x2 x4 x5x2 x3 x5)))
Known c6620..MetaCat_struct_r_partialord : MetaCat IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp
Known c7aa1..MetaCat_struct_r_partialord_Forgetful : MetaFunctor IrreflexiveTransitiveReln BinRelnHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
Definition IrreflexiveSymmetricRelnstruct_r_graph := λ x0 . and (struct_r x0) (unpack_r_o x0 (λ x1 . λ x2 : ι → ι → ο . and (∀ x3 . x3x1not (x2 x3 x3)) (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)))
Known 71675..MetaCat_struct_r_graph : MetaCat IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp
Known 1299d..MetaCat_struct_r_graph_Forgetful : MetaFunctor IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
Param pack_cpack_c : ι((ιο) → ο) → ι
Definition struct_cstruct_c := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : (ι → ο) → ο . x1 (pack_c x2 x3))x1 x0
Param PreContinuousHomHom_struct_c : ιιιο
Known ed6b5..MetaCat_struct_c : MetaCat struct_c PreContinuousHom struct_id struct_comp
Known 803c1..MetaCat_struct_c_Forgetful : MetaFunctor struct_c PreContinuousHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
Known pack_struct_c_Ipack_struct_c_I : ∀ x0 . ∀ x1 : (ι → ο) → ο . struct_c (pack_c x0 x1)
Known pack_c_0_eq2pack_c_0_eq2 : ∀ x0 . ∀ x1 : (ι → ο) → ο . x0 = ap (pack_c x0 x1) 0
Known 5059f..Hom_struct_c_pack : ∀ x0 x1 . ∀ x2 x3 : (ι → ο) → ο . ∀ x4 . PreContinuousHom (pack_c x0 x2) (pack_c x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 : ι → ο . (∀ x7 . x6 x7x7x1)x3 x6x2 (λ x7 . and (x7x0) (x6 (ap x4 x7))))
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Definition 90aea..struct_r_ord := λ x0 . and (struct_r x0) (unpack_r_o x0 (λ x1 . λ x2 : ι → ι → ο . and (and (∀ x3 . x3x1not (x2 x3 x3)) (∀ x3 . x3x1∀ x4 . x4x1or (x2 x3 x4) (x2 x4 x3))) (∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1x2 x3 x4x2 x4 x5x2 x3 x5)))
Known orILorIL : ∀ x0 x1 : ο . x0or x0 x1
Known orIRorIR : ∀ x0 x1 : ο . x1or x0 x1
Theorem daa87.. : ∀ x0 . ∀ x1 : ι → ι → ο . unpack_r_o (pack_r x0 x1) (λ x3 . λ x4 : ι → ι → ο . and (and (∀ x5 . x5x3not (x4 x5 x5)) (∀ x5 . x5x3∀ x6 . x6x3or (x4 x5 x6) (x4 x6 x5))) (∀ x5 . x5x3∀ x6 . x6x3∀ x7 . x7x3x4 x5 x6x4 x6 x7x4 x5 x7)) = and (and (∀ x3 . x3x0not (x1 x3 x3)) (∀ x3 . x3x0∀ x4 . x4x0or (x1 x3 x4) (x1 x4 x3))) (∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0x1 x3 x4x1 x4 x5x1 x3 x5) (proof)
Theorem b8e11.. : ∀ x0 . ∀ x1 : ι → ι → ο . x0 = 090aea.. (pack_r x0 x1) (proof)
Known Empty_eqEmpty_eq : ∀ x0 . (∀ x1 . nIn x1 x0)x0 = 0
Theorem c0e29.. : ∀ x0 . 90aea.. x0∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ο . x2 = 0x1 (pack_r x2 x3))x1 x0 (proof)
Param setsumsetsum : ιιι
Known lamElamE : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1∀ x3 : ο . (∀ x4 . and (x4x0) (∀ x5 : ο . (∀ x6 . and (x6x1 x4) (x2 = setsum x4 x6)x5)x5)x3)x3
Param pair_ppair_p : ιο
Known PiIPiI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . (∀ x3 . x3x2and (pair_p x3) (ap x3 0x0))(∀ x3 . x3x0ap x2 x3x1 x3)x2Pi x0 x1
Theorem b891d.. : ∀ x0 x1 x2 . 90aea.. x090aea.. x1BinRelnHom x0 x1 x2 = (x2 = 0) (proof)
Theorem d7052.. : ∀ x0 x1 x2 . 90aea.. x090aea.. x1x2 = 0BinRelnHom x0 x1 x2 (proof)
Theorem be0ef.. : ∀ x0 x1 . 90aea.. x090aea.. x1BinRelnHom x0 x1 0 (proof)
Theorem 6632f.. : ∀ x0 x1 x2 . 90aea.. x090aea.. x1BinRelnHom x0 x1 x2x2 = 0 (proof)
Theorem caa7a.. : ∀ x0 x1 x2 x3 . 90aea.. x090aea.. x1BinRelnHom x0 x1 x2BinRelnHom x0 x1 x3x2 = x3 (proof)
Theorem 9a5dc.. : ∀ x0 x1 x2 x3 x4 . 90aea.. x0struct_comp x0 x1 x2 x3 x4 = 0 (proof)
Theorem a206e.. : 90aea.. (pack_r 0 (λ x0 x1 . False)) (proof)
Theorem adce2..MetaCat_struct_r_ord_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p 90aea.. BinRelnHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Theorem dd155.. : MetaCat_terminal_p 90aea.. BinRelnHom struct_id struct_comp (pack_r 0 (λ x0 x1 . False)) (λ x0 . 0) (proof)
Theorem 18ea9..MetaCat_struct_r_ord_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p 90aea.. BinRelnHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Definition MetaCat_coproduct_pcoproduct_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 . λ x9 : ι → ι → ι → ι . and (and (and (and (and (x0 x4) (x0 x5)) (x0 x6)) (x1 x4 x6 x7)) (x1 x5 x6 x8)) (∀ x10 . x0 x10∀ x11 x12 . x1 x4 x10 x11x1 x5 x10 x12and (and (and (x1 x6 x10 (x9 x10 x11 x12)) (x3 x4 x6 x10 (x9 x10 x11 x12) x7 = x11)) (x3 x5 x6 x10 (x9 x10 x11 x12) x8 = x12)) (∀ x13 . x1 x6 x10 x13x3 x4 x6 x10 x13 x7 = x11x3 x5 x6 x10 x13 x8 = x12x13 = x9 x10 x11 x12))
Definition MetaCat_coproduct_constr_pcoproduct_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 : ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 x9 . x0 x8x0 x9MetaCat_coproduct_p x0 x1 x2 x3 x8 x9 (x4 x8 x9) (x5 x8 x9) (x6 x8 x9) (x7 x8 x9)
Known and6Iand6I : ∀ x0 x1 x2 x3 x4 x5 : ο . x0x1x2x3x4x5and (and (and (and (and x0 x1) x2) x3) x4) x5
Known and4Iand4I : ∀ x0 x1 x2 x3 : ο . x0x1x2x3and (and (and x0 x1) x2) x3
Theorem ebfe1..MetaCat_struct_r_ord_coproduct_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p 90aea.. BinRelnHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Definition MetaCat_product_pproduct_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 . λ x9 : ι → ι → ι → ι . and (and (and (and (and (x0 x4) (x0 x5)) (x0 x6)) (x1 x6 x4 x7)) (x1 x6 x5 x8)) (∀ x10 . x0 x10∀ x11 x12 . x1 x10 x4 x11x1 x10 x5 x12and (and (and (x1 x10 x6 (x9 x10 x11 x12)) (x3 x10 x6 x4 x7 (x9 x10 x11 x12) = x11)) (x3 x10 x6 x5 x8 (x9 x10 x11 x12) = x12)) (∀ x13 . x1 x10 x6 x13x3 x10 x6 x4 x7 x13 = x11x3 x10 x6 x5 x8 x13 = x12x13 = x9 x10 x11 x12))
Definition MetaCat_product_constr_pproduct_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 : ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 x9 . x0 x8x0 x9MetaCat_product_p x0 x1 x2 x3 x8 x9 (x4 x8 x9) (x5 x8 x9) (x6 x8 x9) (x7 x8 x9)
Theorem 06552.. : MetaCat_product_constr_p 90aea.. BinRelnHom struct_id struct_comp (λ x0 x1 . pack_r 0 (λ x2 x3 . False)) (λ x0 x1 . 0) (λ x0 x1 . 0) (λ x0 x1 x2 x3 x4 . 0) (proof)
Theorem e28a3..MetaCat_struct_r_ord_product_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p 90aea.. BinRelnHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Definition MetaCat_coequalizer_pcoequalizer_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 x9 . λ x10 : ι → ι → ι . and (and (and (and (and (and (and (x0 x4) (x0 x5)) (x1 x4 x5 x6)) (x1 x4 x5 x7)) (x0 x8)) (x1 x5 x8 x9)) (x3 x4 x5 x8 x9 x6 = x3 x4 x5 x8 x9 x7)) (∀ x11 . x0 x11∀ x12 . x1 x5 x11 x12x3 x4 x5 x11 x12 x6 = x3 x4 x5 x11 x12 x7and (and (x1 x8 x11 (x10 x11 x12)) (x3 x5 x8 x11 (x10 x11 x12) x9 = x12)) (∀ x13 . x1 x8 x11 x13x3 x5 x8 x11 x13 x9 = x12x13 = x10 x11 x12))
Definition MetaCat_coequalizer_struct_pcoequalizer_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 : ι → ι → ι → ι → ι . λ x6 : ι → ι → ι → ι → ι → ι → ι . ∀ x7 x8 . x0 x7x0 x8∀ x9 x10 . x1 x7 x8 x9x1 x7 x8 x10MetaCat_coequalizer_p x0 x1 x2 x3 x7 x8 x9 x10 (x4 x7 x8 x9 x10) (x5 x7 x8 x9 x10) (x6 x7 x8 x9 x10)
Known 41253..and8I : ∀ x0 x1 x2 x3 x4 x5 x6 x7 : ο . x0x1x2x3x4x5x6x7and (and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6) x7
Theorem df039..MetaCat_struct_r_ord_coequalizer_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_struct_p 90aea.. BinRelnHom struct_id struct_comp x1 x3 x5x4)x4)x2)x2)x0)x0 (proof)
Definition MetaCat_equalizer_pequalizer_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 x9 . λ x10 : ι → ι → ι . and (and (and (and (and (and (and (x0 x4) (x0 x5)) (x1 x4 x5 x6)) (x1 x4 x5 x7)) (x0 x8)) (x1 x8 x4 x9)) (x3 x8 x4 x5 x6 x9 = x3 x8 x4 x5 x7 x9)) (∀ x11 . x0 x11∀ x12 . x1 x11 x4 x12x3 x11 x4 x5 x6 x12 = x3 x11 x4 x5 x7 x12and (and (x1 x11 x8 (x10 x11 x12)) (x3 x11 x8 x4 x9 (x10 x11 x12) = x12)) (∀ x13 . x1 x11 x8 x13x3 x11 x8 x4 x9 x13 = x12x13 = x10 x11 x12))
Definition MetaCat_equalizer_struct_pequalizer_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 : ι → ι → ι → ι → ι . λ x6 : ι → ι → ι → ι → ι → ι → ι . ∀ x7 x8 . x0 x7x0 x8∀ x9 x10 . x1 x7 x8 x9x1 x7 x8 x10MetaCat_equalizer_p x0 x1 x2 x3 x7 x8 x9 x10 (x4 x7 x8 x9 x10) (x5 x7 x8 x9 x10) (x6 x7 x8 x9 x10)
Theorem 788ee..MetaCat_struct_r_ord_equalizer_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p 90aea.. BinRelnHom struct_id struct_comp x1 x3 x5x4)x4)x2)x2)x0)x0 (proof)
Definition MetaCat_pushout_ppushout_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 x9 x10 x11 . λ x12 : ι → ι → ι → ι . and (and (and (and (and (and (and (and (and (x0 x4) (x0 x5)) (x0 x6)) (x1 x6 x4 x7)) (x1 x6 x5 x8)) (x0 x9)) (x1 x4 x9 x10)) (x1 x5 x9 x11)) (x3 x6 x4 x9 x10 x7 = x3 x6 x5 x9 x11 x8)) (∀ x13 . x0 x13∀ x14 . x1 x4 x13 x14∀ x15 . x1 x5 x13 x15x3 x6 x4 x13 x14 x7 = x3 x6 x5 x13 x15 x8and (and (and (x1 x9 x13 (x12 x13 x14 x15)) (x3 x4 x9 x13 (x12 x13 x14 x15) x10 = x14)) (x3 x5 x9 x13 (x12 x13 x14 x15) x11 = x15)) (∀ x16 . x1 x9 x13 x16x3 x4 x9 x13 x16 x10 = x14x3 x5 x9 x13 x16 x11 = x15x16 = x12 x13 x14 x15))
Definition MetaCat_pushout_constr_ppushout_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 x4 x5 x6 : ι → ι → ι → ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . ∀ x8 x9 x10 . x0 x8x0 x9x0 x10∀ x11 x12 . x1 x10 x8 x11x1 x10 x9 x12MetaCat_pushout_p x0 x1 x2 x3 x8 x9 x10 x11 x12 (x4 x8 x9 x10 x11 x12) (x5 x8 x9 x10 x11 x12) (x6 x8 x9 x10 x11 x12) (x7 x8 x9 x10 x11 x12)
Known 19e22..and10I : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 : ο . x0x1x2x3x4x5x6x7x8x9and (and (and (and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6) x7) x8) x9
Theorem e5c69..MetaCat_struct_r_ord_pushout_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pushout_constr_p 90aea.. BinRelnHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Definition MetaCat_pullback_ppullback_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 x9 x10 x11 . λ x12 : ι → ι → ι → ι . and (and (and (and (and (and (and (and (and (x0 x4) (x0 x5)) (x0 x6)) (x1 x4 x6 x7)) (x1 x5 x6 x8)) (x0 x9)) (x1 x9 x4 x10)) (x1 x9 x5 x11)) (x3 x9 x4 x6 x7 x10 = x3 x9 x5 x6 x8 x11)) (∀ x13 . x0 x13∀ x14 . x1 x13 x4 x14∀ x15 . x1 x13 x5 x15x3 x13 x4 x6 x7 x14 = x3 x13 x5 x6 x8 x15and (and (and (x1 x13 x9 (x12 x13 x14 x15)) (x3 x13 x9 x4 x10 (x12 x13 x14 x15) = x14)) (x3 x13 x9 x5 x11 (x12 x13 x14 x15) = x15)) (∀ x16 . x1 x13 x9 x16x3 x13 x9 x4 x10 x16 = x14x3 x13 x9 x5 x11 x16 = x15x16 = x12 x13 x14 x15))
Definition MetaCat_pullback_struct_ppullback_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 x4 x5 x6 : ι → ι → ι → ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . ∀ x8 x9 x10 . x0 x8x0 x9x0 x10∀ x11 x12 . x1 x8 x10 x11x1 x9 x10 x12MetaCat_pullback_p x0 x1 x2 x3 x8 x9 x10 x11 x12 (x4 x8 x9 x10 x11 x12) (x5 x8 x9 x10 x11 x12) (x6 x8 x9 x10 x11 x12) (x7 x8 x9 x10 x11 x12)
Theorem 95edd..MetaCat_struct_r_ord_pullback_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p 90aea.. BinRelnHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Definition MetaCat_exp_pexponent_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 : ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . λ x8 x9 x10 x11 . λ x12 : ι → ι → ι . and (and (and (and (x0 x8) (x0 x9)) (x0 x10)) (x1 (x4 x10 x8) x9 x11)) (∀ x13 . x0 x13∀ x14 . x1 (x4 x13 x8) x9 x14and (and (x1 x13 x10 (x12 x13 x14)) (x3 (x4 x13 x8) (x4 x10 x8) x9 x11 (x7 x10 x8 (x4 x13 x8) (x3 (x4 x13 x8) x13 x10 (x12 x13 x14) (x5 x13 x8)) (x6 x13 x8)) = x14)) (∀ x15 . x1 x13 x10 x15x3 (x4 x13 x8) (x4 x10 x8) x9 x11 (x7 x10 x8 (x4 x13 x8) (x3 (x4 x13 x8) x13 x10 x15 (x5 x13 x8)) (x6 x13 x8)) = x14x15 = x12 x13 x14))
Definition MetaCat_exp_constr_pproduct_exponent_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 : ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . λ x8 x9 : ι → ι → ι . λ x10 : ι → ι → ι → ι → ι . and (MetaCat_product_constr_p x0 x1 x2 x3 x4 x5 x6 x7) (∀ x11 x12 . x0 x11x0 x12MetaCat_exp_p x0 x1 x2 x3 x4 x5 x6 x7 x11 x12 (x8 x11 x12) (x9 x11 x12) (x10 x11 x12))
Known and5Iand5I : ∀ x0 x1 x2 x3 x4 : ο . x0x1x2x3x4and (and (and (and x0 x1) x2) x3) x4
Theorem d432e..MetaCat_struct_r_ord_product_exponent : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι . (∀ x12 : ο . (∀ x13 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p 90aea.. BinRelnHom struct_id struct_comp x1 x3 x5 x7 x9 x11 x13x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Definition MetaCat_monic_pmonic := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 . and (and (and (x0 x4) (x0 x5)) (x1 x4 x5 x6)) (∀ x7 . x0 x7∀ x8 x9 . x1 x7 x4 x8x1 x7 x4 x9x3 x7 x4 x5 x6 x8 = x3 x7 x4 x5 x6 x9x8 = x9)
Definition MetaCat_subobject_classifier_psubobject_classifier_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . λ x6 x7 . λ x8 : ι → ι → ι → ι . λ x9 : ι → ι → ι → ι → ι → ι → ι . and (and (and (MetaCat_terminal_p x0 x1 x2 x3 x4 x5) (x0 x6)) (x1 x4 x6 x7)) (∀ x10 x11 x12 . MetaCat_monic_p x0 x1 x2 x3 x10 x11 x12and (x1 x11 x6 (x8 x10 x11 x12)) (MetaCat_pullback_p x0 x1 x2 x3 x4 x11 x6 x7 (x8 x10 x11 x12) x10 (x5 x10) x12 (x9 x10 x11 x12)))
Theorem 568d6..MetaCat_struct_r_ord_subobject_classifier : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι . MetaCat_subobject_classifier_p 90aea.. BinRelnHom struct_id struct_comp x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Definition MetaCat_nno_pnno_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . λ x6 x7 x8 . λ x9 : ι → ι → ι → ι . and (and (and (and (MetaCat_terminal_p x0 x1 x2 x3 x4 x5) (x0 x6)) (x1 x4 x6 x7)) (x1 x6 x6 x8)) (∀ x10 x11 x12 . x0 x10x1 x4 x10 x11x1 x10 x10 x12and (and (and (x1 x6 x10 (x9 x10 x11 x12)) (x3 x4 x6 x10 (x9 x10 x11 x12) x7 = x11)) (x3 x6 x6 x10 (x9 x10 x11 x12) x8 = x3 x6 x10 x10 x12 (x9 x10 x11 x12))) (∀ x13 . x1 x6 x10 x13x3 x4 x6 x10 x13 x7 = x11x3 x6 x6 x10 x13 x8 = x3 x6 x10 x10 x12 x13x13 = x9 x10 x11 x12))
Theorem 1a527..MetaCat_struct_r_ord_nno : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι . MetaCat_nno_p 90aea.. BinRelnHom struct_id struct_comp x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem 0eec1.. : not (∀ x0 : ο . (∀ x1 : ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι . MetaAdjunction_strict (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) 90aea.. BinRelnHom struct_id struct_comp x1 x3 (λ x8 . ap x8 0) (λ x8 x9 x10 . x10) x5 x7x6)x6)x4)x4)x2)x2)x0)x0) (proof)
Definition 8b17e..struct_r_wellord := λ x0 . and (struct_r x0) (unpack_r_o x0 (λ x1 . λ x2 : ι → ι → ο . and (and (and (∀ x3 . x3x1not (x2 x3 x3)) (∀ x3 . x3x1∀ x4 . x4x1or (x2 x3 x4) (x2 x4 x3))) (∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1x2 x3 x4x2 x4 x5x2 x3 x5)) (∀ x3 : ι → ο . (∀ x4 . x4x1(∀ x5 . x5x1x2 x5 x4x3 x5)x3 x4)∀ x4 . x4x1x3 x4)))
Theorem a6627.. : ∀ x0 . ∀ x1 : ι → ι → ο . unpack_r_o (pack_r x0 x1) (λ x3 . λ x4 : ι → ι → ο . and (and (and (∀ x5 . x5x3not (x4 x5 x5)) (∀ x5 . x5x3∀ x6 . x6x3or (x4 x5 x6) (x4 x6 x5))) (∀ x5 . x5x3∀ x6 . x6x3∀ x7 . x7x3x4 x5 x6x4 x6 x7x4 x5 x7)) (∀ x5 : ι → ο . (∀ x6 . x6x3(∀ x7 . x7x3x4 x7 x6x5 x7)x5 x6)∀ x6 . x6x3x5 x6)) = and (and (and (∀ x3 . x3x0not (x1 x3 x3)) (∀ x3 . x3x0∀ x4 . x4x0or (x1 x3 x4) (x1 x4 x3))) (∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0x1 x3 x4x1 x4 x5x1 x3 x5)) (∀ x3 : ι → ο . (∀ x4 . x4x0(∀ x5 . x5x0x1 x5 x4x3 x5)x3 x4)∀ x4 . x4x0x3 x4) (proof)
Theorem 71a48.. : ∀ x0 . ∀ x1 : ι → ι → ο . x0 = 08b17e.. (pack_r x0 x1) (proof)
Theorem 700c1.. : ∀ x0 . 8b17e.. x0∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ο . x2 = 0x1 (pack_r x2 x3))x1 x0 (proof)
Theorem e6e14.. : ∀ x0 x1 x2 . 8b17e.. x08b17e.. x1BinRelnHom x0 x1 x2 = (x2 = 0) (proof)
Theorem 19844.. : ∀ x0 x1 x2 . 8b17e.. x08b17e.. x1x2 = 0BinRelnHom x0 x1 x2 (proof)
Theorem 66e9d.. : ∀ x0 x1 . 8b17e.. x08b17e.. x1BinRelnHom x0 x1 0 (proof)
Theorem 68a11.. : ∀ x0 x1 x2 . 8b17e.. x08b17e.. x1BinRelnHom x0 x1 x2x2 = 0 (proof)
Theorem c3477.. : ∀ x0 x1 x2 x3 . 8b17e.. x08b17e.. x1BinRelnHom x0 x1 x2BinRelnHom x0 x1 x3x2 = x3 (proof)
Theorem 0dd18.. : ∀ x0 x1 x2 x3 x4 . 8b17e.. x0struct_comp x0 x1 x2 x3 x4 = 0 (proof)
Theorem 54f6a.. : 8b17e.. (pack_r 0 (λ x0 x1 . False)) (proof)
Theorem 105dd..MetaCat_struct_r_wellord_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p 8b17e.. BinRelnHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Theorem 71659.. : MetaCat_terminal_p 8b17e.. BinRelnHom struct_id struct_comp (pack_r 0 (λ x0 x1 . False)) (λ x0 . 0) (proof)
Theorem 49763..MetaCat_struct_r_wellord_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p 8b17e.. BinRelnHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)
Theorem 17458..MetaCat_struct_r_wellord_coproduct_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p 8b17e.. BinRelnHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem b2d5d.. : MetaCat_product_constr_p 8b17e.. BinRelnHom struct_id struct_comp (λ x0 x1 . pack_r 0 (λ x2 x3 . False)) (λ x0 x1 . 0) (λ x0 x1 . 0) (λ x0 x1 x2 x3 x4 . 0) (proof)
Theorem 71d59..MetaCat_struct_r_wellord_product_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p 8b17e.. BinRelnHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem 10b92..MetaCat_struct_r_wellord_coequalizer_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_struct_p 8b17e.. BinRelnHom struct_id struct_comp x1 x3 x5x4)x4)x2)x2)x0)x0 (proof)
Theorem d27a8..MetaCat_struct_r_wellord_equalizer_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_struct_p 8b17e.. BinRelnHom struct_id struct_comp x1 x3 x5x4)x4)x2)x2)x0)x0 (proof)
Theorem d4e5c..MetaCat_struct_r_wellord_pushout_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pushout_constr_p 8b17e.. BinRelnHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem ee3b3..MetaCat_struct_r_wellord_pullback_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_struct_p 8b17e.. BinRelnHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem 9460d..MetaCat_struct_r_wellord_product_exponent : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι . (∀ x12 : ο . (∀ x13 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p 8b17e.. BinRelnHom struct_id struct_comp x1 x3 x5 x7 x9 x11 x13x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem d2cf4..MetaCat_struct_r_wellord_subobject_classifier : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι . MetaCat_subobject_classifier_p 8b17e.. BinRelnHom struct_id struct_comp x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem d6d09..MetaCat_struct_r_wellord_nno : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι . MetaCat_nno_p 8b17e.. BinRelnHom struct_id struct_comp x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem 2fd7e.. : not (∀ x0 : ο . (∀ x1 : ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι . MetaAdjunction_strict (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) 8b17e.. BinRelnHom struct_id struct_comp x1 x3 (λ x8 . ap x8 0) (λ x8 x9 x10 . x10) x5 x7x6)x6)x4)x4)x2)x2)x0)x0) (proof)