Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrAmQ..
/
93dc4..
PUZkj..
/
8ba65..
vout
PrAmQ..
/
c423f..
9.97 bars
TML5i..
/
d0d36..
ownership of
212cb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSwy..
/
16251..
ownership of
90461..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQvZ..
/
14aee..
ownership of
b09b1..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZ4F..
/
1edeb..
ownership of
a0d0c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJxD..
/
1796d..
ownership of
0ceda..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcQJ..
/
14bc5..
ownership of
54751..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaco..
/
6bc7f..
ownership of
e19f0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZ89..
/
4d3ae..
ownership of
d526c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdKc..
/
d73e2..
ownership of
bd5cb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVG7..
/
ab36d..
ownership of
9c093..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXqd..
/
5ecd8..
ownership of
ddf23..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPSR..
/
c7fe9..
ownership of
033fb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMM5h..
/
469cd..
ownership of
6bdd5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMN1F..
/
1288b..
ownership of
db83f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUJA..
/
2ffa2..
ownership of
edf3f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWf1..
/
4ac22..
ownership of
31582..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TML2C..
/
4309a..
ownership of
83b97..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXbM..
/
afb85..
ownership of
d2a56..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRCE..
/
32654..
ownership of
98497..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNmy..
/
29bc3..
ownership of
d2249..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXwN..
/
6a2e1..
ownership of
2df14..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJCB..
/
86cee..
ownership of
12211..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPXY..
/
3f400..
ownership of
5c2dd..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKP8..
/
5a4ce..
ownership of
fcc70..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJXx..
/
75b68..
ownership of
04e57..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWfv..
/
dbb42..
ownership of
44edb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZih..
/
35a98..
ownership of
0eec3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJq9..
/
1223b..
ownership of
76236..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbmB..
/
5596e..
ownership of
ce37f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMX3L..
/
830c9..
ownership of
c897d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQrn..
/
d35e6..
ownership of
96508..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdQY..
/
85bc1..
ownership of
875f6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJnC..
/
c2ce4..
ownership of
5e6e0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYUS..
/
15011..
ownership of
750a4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUfT1..
/
b471c..
doc published by
PrGxv..
Param
f482f..
:
ι
→
ι
→
ι
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Known
f22ec..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
x1
x2
Known
06ef3..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
Known
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Theorem
5e6e0..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(
λ x9 .
If_i
(
x9
=
4a7ef..
)
x0
(
If_i
(
x9
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
x6
x7
)
)
)
)
)
)
)
)
4a7ef..
=
x0
(proof)
Known
71150..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
Definition
False
:=
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Known
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
5c667..
:
4ae4a..
4a7ef..
=
4a7ef..
⟶
∀ x0 : ο .
x0
Theorem
96508..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(
λ x9 .
If_i
(
x9
=
4a7ef..
)
x0
(
If_i
(
x9
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
x6
x7
)
)
)
)
)
)
)
)
(
4ae4a..
4a7ef..
)
=
x1
(proof)
Known
49aa4..
:
prim1
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
Known
3a2b6..
:
4ae4a..
(
4ae4a..
4a7ef..
)
=
4a7ef..
⟶
∀ x0 : ο .
x0
Known
f9d2f..
:
4ae4a..
(
4ae4a..
4a7ef..
)
=
4ae4a..
4a7ef..
⟶
∀ x0 : ο .
x0
Theorem
ce37f..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(
λ x9 .
If_i
(
x9
=
4a7ef..
)
x0
(
If_i
(
x9
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
x6
x7
)
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
(proof)
Known
caeb5..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
Known
57b7e..
:
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
4a7ef..
⟶
∀ x0 : ο .
x0
Known
daead..
:
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
4ae4a..
4a7ef..
⟶
∀ x0 : ο .
x0
Known
0c325..
:
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
4ae4a..
(
4ae4a..
4a7ef..
)
⟶
∀ x0 : ο .
x0
Theorem
0eec3..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(
λ x9 .
If_i
(
x9
=
4a7ef..
)
x0
(
If_i
(
x9
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
x6
x7
)
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
x3
(proof)
Known
d4e8e..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
Known
37f0a..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
4a7ef..
⟶
∀ x0 : ο .
x0
Known
d1b49..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
4ae4a..
4a7ef..
⟶
∀ x0 : ο .
x0
Known
05e02..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
4ae4a..
(
4ae4a..
4a7ef..
)
⟶
∀ x0 : ο .
x0
Known
2f510..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
⟶
∀ x0 : ο .
x0
Theorem
04e57..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(
λ x9 .
If_i
(
x9
=
4a7ef..
)
x0
(
If_i
(
x9
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
x6
x7
)
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
x4
(proof)
Known
69e64..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
Known
3dae7..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
4a7ef..
⟶
∀ x0 : ο .
x0
Known
a82a2..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
4ae4a..
4a7ef..
⟶
∀ x0 : ο .
x0
Known
7fa57..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
4ae4a..
(
4ae4a..
4a7ef..
)
⟶
∀ x0 : ο .
x0
Known
67cbd..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
⟶
∀ x0 : ο .
x0
Known
e25a7..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
⟶
∀ x0 : ο .
x0
Theorem
5c2dd..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(
λ x9 .
If_i
(
x9
=
4a7ef..
)
x0
(
If_i
(
x9
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
x6
x7
)
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
=
x5
(proof)
Known
4b5d5..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
Known
cdcd4..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
=
4a7ef..
⟶
∀ x0 : ο .
x0
Known
31e4d..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
=
4ae4a..
4a7ef..
⟶
∀ x0 : ο .
x0
Known
5ccd2..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
=
4ae4a..
(
4ae4a..
4a7ef..
)
⟶
∀ x0 : ο .
x0
Known
7357c..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
⟶
∀ x0 : ο .
x0
Known
d13e3..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
⟶
∀ x0 : ο .
x0
Known
2d896..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
⟶
∀ x0 : ο .
x0
Theorem
2df14..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(
λ x9 .
If_i
(
x9
=
4a7ef..
)
x0
(
If_i
(
x9
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
x6
x7
)
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
=
x6
(proof)
Known
cbdee..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
Known
ecc01..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
=
4a7ef..
⟶
∀ x0 : ο .
x0
Known
c6805..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
=
4ae4a..
4a7ef..
⟶
∀ x0 : ο .
x0
Known
58158..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
=
4ae4a..
(
4ae4a..
4a7ef..
)
⟶
∀ x0 : ο .
x0
Known
16901..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
⟶
∀ x0 : ο .
x0
Known
ee53e..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
⟶
∀ x0 : ο .
x0
Known
ac13b..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
⟶
∀ x0 : ο .
x0
Known
516c5..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
⟶
∀ x0 : ο .
x0
Theorem
98497..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(
λ x9 .
If_i
(
x9
=
4a7ef..
)
x0
(
If_i
(
x9
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(
If_i
(
x9
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
x6
x7
)
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
=
x7
(proof)
Known
1cd68..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
Theorem
83b97..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
(
λ x10 .
If_i
(
x10
=
4a7ef..
)
x0
(
If_i
(
x10
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
x6
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
x7
x8
)
)
)
)
)
)
)
)
)
4a7ef..
=
x0
(proof)
Known
4e80f..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
Theorem
edf3f..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
(
λ x10 .
If_i
(
x10
=
4a7ef..
)
x0
(
If_i
(
x10
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
x6
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
x7
x8
)
)
)
)
)
)
)
)
)
(
4ae4a..
4a7ef..
)
=
x1
(proof)
Known
384d5..
:
prim1
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
Theorem
6bdd5..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
(
λ x10 .
If_i
(
x10
=
4a7ef..
)
x0
(
If_i
(
x10
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
x6
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
x7
x8
)
)
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
(proof)
Known
c8b62..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
Theorem
ddf23..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
(
λ x10 .
If_i
(
x10
=
4a7ef..
)
x0
(
If_i
(
x10
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
x6
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
x7
x8
)
)
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
x3
(proof)
Known
1ebb9..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
Theorem
bd5cb..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
(
λ x10 .
If_i
(
x10
=
4a7ef..
)
x0
(
If_i
(
x10
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
x6
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
x7
x8
)
)
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
x4
(proof)
Known
9bb00..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
Theorem
e19f0..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
(
λ x10 .
If_i
(
x10
=
4a7ef..
)
x0
(
If_i
(
x10
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
x6
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
x7
x8
)
)
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
=
x5
(proof)
Known
0d93c..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
Theorem
0ceda..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
(
λ x10 .
If_i
(
x10
=
4a7ef..
)
x0
(
If_i
(
x10
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
x6
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
x7
x8
)
)
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
=
x6
(proof)
Known
65954..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
Theorem
b09b1..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
(
λ x10 .
If_i
(
x10
=
4a7ef..
)
x0
(
If_i
(
x10
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
x6
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
x7
x8
)
)
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
=
x7
(proof)
Known
a1e1a..
:
prim1
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
Known
58716..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
=
4a7ef..
⟶
∀ x0 : ο .
x0
Known
19797..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
=
4ae4a..
4a7ef..
⟶
∀ x0 : ο .
x0
Known
8fcc8..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
=
4ae4a..
(
4ae4a..
4a7ef..
)
⟶
∀ x0 : ο .
x0
Known
f5d01..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
⟶
∀ x0 : ο .
x0
Known
622d4..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
⟶
∀ x0 : ο .
x0
Known
17be6..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
⟶
∀ x0 : ο .
x0
Known
cc164..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
⟶
∀ x0 : ο .
x0
Known
c4f4e..
:
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
⟶
∀ x0 : ο .
x0
Theorem
212cb..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
)
(
λ x10 .
If_i
(
x10
=
4a7ef..
)
x0
(
If_i
(
x10
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x4
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
x6
(
If_i
(
x10
=
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
x7
x8
)
)
)
)
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
)
)
=
x8
(proof)