Search for blocks/addresses/...
Proofgold Proposition
∀ x0 x1 x2 .
SNo
x0
⟶
(
∀ x3 .
x3
∈
SNoS_
(
SNoLev
x0
)
⟶
∀ x4 x5 .
SNoCutP
x4
x5
⟶
x3
=
SNoCut
x4
x5
⟶
minus_SNo
x3
=
SNoCut
(
prim5
x5
minus_SNo
)
(
prim5
x4
minus_SNo
)
)
⟶
SNoCutP
x1
x2
⟶
(
∀ x3 .
x3
∈
x2
⟶
SNo
x3
)
⟶
x0
=
SNoCut
x1
x2
⟶
SNoCutP
(
prim5
x2
minus_SNo
)
(
prim5
x1
minus_SNo
)
⟶
SNo
(
SNoCut
(
prim5
x2
minus_SNo
)
(
prim5
x1
minus_SNo
)
)
⟶
(
∀ x3 .
SNo
x3
⟶
(
∀ x4 .
x4
∈
prim5
x2
minus_SNo
⟶
SNoLt
x4
x3
)
⟶
(
∀ x4 .
x4
∈
prim5
x1
minus_SNo
⟶
SNoLt
x3
x4
)
⟶
and
(
SNoLev
(
SNoCut
(
prim5
x2
minus_SNo
)
(
prim5
x1
minus_SNo
)
)
⊆
SNoLev
x3
)
(
SNoEq_
(
SNoLev
(
SNoCut
(
prim5
x2
minus_SNo
)
(
prim5
x1
minus_SNo
)
)
)
(
SNoCut
(
prim5
x2
minus_SNo
)
(
prim5
x1
minus_SNo
)
)
x3
)
)
⟶
(
∀ x3 .
x3
∈
prim5
x2
minus_SNo
⟶
SNoLt
x3
(
minus_SNo
x0
)
)
⟶
(
∀ x3 .
x3
∈
prim5
x1
minus_SNo
⟶
SNoLt
(
minus_SNo
x0
)
x3
)
⟶
minus_SNo
x0
=
SNoCut
(
prim5
x2
minus_SNo
)
(
prim5
x1
minus_SNo
)
type
prop
theory
HotG
name
-
proof
PUTNo..
Megalodon
Conj_minus_SNoCut_eq_lem__8__3
proofgold address
TMX2K..
Conj_minus_SNoCut_eq_lem__8__3
creator
35053
PrNpY..
/
93de3..
owner
35061
PrNpY..
/
72190..
term root
34872..