Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCit..
/
7174c..
PUeDD..
/
a935d..
vout
PrCit..
/
0f334..
6.14 bars
TMHQT..
/
a4e44..
ownership of
2562e..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMUTh..
/
c7268..
ownership of
f84df..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMPUF..
/
91fe3..
ownership of
e94f4..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMVtA..
/
1048c..
ownership of
6158c..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMUmw..
/
5f1b4..
ownership of
50f80..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMGVo..
/
5939c..
ownership of
3243c..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMb4e..
/
882e8..
ownership of
eb1da..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMcsJ..
/
ec036..
ownership of
9b611..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMcDi..
/
ad987..
ownership of
6aebb..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMWZ3..
/
4e02e..
ownership of
b200e..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMXcm..
/
afb6c..
ownership of
73189..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMPGe..
/
555fe..
ownership of
a7f35..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
PUYJ5..
/
2923d..
doc published by
Pr4zB..
Param
nat_p
nat_p
:
ι
→
ο
Param
ordsucc
ordsucc
:
ι
→
ι
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Known
816bd..
:
add_nat
16
8
=
24
Known
add_nat_p
add_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
add_nat
x0
x1
)
Known
nat_16
nat_16
:
nat_p
16
Known
nat_8
nat_8
:
nat_p
8
Theorem
73189..
:
nat_p
24
(proof)
Param
TwoRamseyProp
TwoRamseyProp
:
ι
→
ι
→
ι
→
ο
Known
6ba1d..
:
add_nat
24
7
=
31
Param
TwoRamseyProp_atleastp
:
ι
→
ι
→
ι
→
ο
Known
97c7e..
:
∀ x0 x1 x2 x3 .
nat_p
x2
⟶
nat_p
x3
⟶
TwoRamseyProp_atleastp
(
ordsucc
x0
)
x1
x2
⟶
TwoRamseyProp_atleastp
x0
(
ordsucc
x1
)
x3
⟶
TwoRamseyProp
(
ordsucc
x0
)
(
ordsucc
x1
)
(
ordsucc
(
add_nat
x2
x3
)
)
Known
nat_7
nat_7
:
nat_p
7
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Known
TwoRamseyProp_atleastp_atleastp
:
∀ x0 x1 x2 x3 x4 .
TwoRamseyProp
x0
x2
x4
⟶
atleastp
x1
x0
⟶
atleastp
x3
x2
⟶
TwoRamseyProp_atleastp
x1
x3
x4
Known
TwoRamseyProp_3_6_24
:
TwoRamseyProp
3
6
24
Known
atleastp_ref
:
∀ x0 .
atleastp
x0
x0
Known
95eb4..
:
∀ x0 .
TwoRamseyProp_atleastp
2
x0
x0
Theorem
TwoRamseyProp_3_7_32
:
TwoRamseyProp
3
7
32
(proof)
Known
46dcf..
:
∀ x0 x1 x2 x3 .
atleastp
x2
x3
⟶
TwoRamseyProp
x0
x1
x2
⟶
TwoRamseyProp
x0
x1
x3
Param
equip
equip
:
ι
→
ι
→
ο
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Param
exp_nat
exp_nat
:
ι
→
ι
→
ι
Known
e089c..
:
exp_nat
2
5
=
32
Known
293d3..
:
∀ x0 .
nat_p
x0
⟶
equip
(
prim4
x0
)
(
exp_nat
2
x0
)
Known
nat_5
nat_5
:
nat_p
5
Theorem
TwoRamseyProp_3_7_Power_5
TwoRamseyProp_3_7_Power_5
:
TwoRamseyProp
3
7
(
prim4
5
)
(proof)
Param
Subq
Subq
:
ι
→
ι
→
ο
Known
697c6..
:
∀ x0 x1 x2 x3 .
x2
⊆
x3
⟶
TwoRamseyProp
x0
x1
x2
⟶
TwoRamseyProp
x0
x1
x3
Known
78a3e..
:
∀ x0 .
prim4
x0
⊆
prim4
(
ordsucc
x0
)
Theorem
TwoRamseyProp_3_7_Power_6
TwoRamseyProp_3_7_Power_6
:
TwoRamseyProp
3
7
(
prim4
6
)
(proof)
Theorem
TwoRamseyProp_3_7_Power_7
TwoRamseyProp_3_7_Power_7
:
TwoRamseyProp
3
7
(
prim4
7
)
(proof)
Theorem
TwoRamseyProp_3_7_Power_8
TwoRamseyProp_3_7_Power_8
:
TwoRamseyProp
3
7
(
prim4
8
)
(proof)