∀ x0 : (ι → ι) → (ι → ι → (ι → ι) → ι → ι) → ((ι → ι → ι) → (ι → ι) → ι → ι) → ι . ∀ x1 : (((((ι → ι) → ι → ι) → ι) → ((ι → ι) → ι → ι) → ι) → (((ι → ι) → ι → ι) → (ι → ι) → ι) → ι) → ι → ι → ι → ι . ∀ x2 : (ι → ι) → (ι → ι) → ι . ∀ x3 : (((((ι → ι) → ι → ι) → ι → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι) → ι) → ι → ι . (∀ x4 . ∀ x5 : ι → ι . ∀ x6 : ι → ((ι → ι) → ι) → ι . ∀ x7 : ((ι → ι → ι) → ι → ι) → ι . x3 (λ x9 : (((ι → ι) → ι → ι) → ι → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι . 0) 0 = x6 (setsum 0 0) (λ x9 : ι → ι . Inj0 (x6 (setsum (Inj0 0) (x5 0)) (λ x10 : ι → ι . setsum (x9 0) (x3 (λ x11 : (((ι → ι) → ι → ι) → ι → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι . 0) 0))))) ⟶ (∀ x4 . ∀ x5 : (ι → ι → ι) → ι . ∀ x6 x7 . x3 (λ x9 : (((ι → ι) → ι → ι) → ι → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι . 0) (x1 (λ x9 : (((ι → ι) → ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . λ x10 : ((ι → ι) → ι → ι) → (ι → ι) → ι . Inj1 (x2 (λ x11 . setsum 0 0) (λ x11 . 0))) (x2 (λ x9 . 0) (λ x9 . x7)) (Inj1 0) (Inj1 (x0 (λ x9 . Inj1 0) (λ x9 x10 . λ x11 : ι → ι . λ x12 . x2 (λ x13 . 0) (λ x13 . 0)) (λ x9 : ι → ι → ι . λ x10 : ι → ι . λ x11 . x1 (λ x12 : (((ι → ι) → ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . λ x13 : ((ι → ι) → ι → ι) → (ι → ι) → ι . 0) 0 0 0)))) = Inj0 (x0 (λ x9 . x3 (λ x10 : (((ι → ι) → ι → ι) → ι → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι . 0) 0) (λ x9 x10 . λ x11 : ι → ι . λ x12 . x0 (λ x13 . x2 (λ x14 . 0) (λ x14 . 0)) (λ x13 x14 . λ x15 : ι → ι . x1 (λ x16 : (((ι → ι) → ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . λ x17 : ((ι → ι) → ι → ι) → (ι → ι) → ι . setsum 0 0) 0 (x15 0)) (λ x13 : ι → ι → ι . λ x14 : ι → ι . λ x15 . 0)) (λ x9 : ι → ι → ι . λ x10 : ι → ι . λ x11 . x9 0 (Inj1 x11)))) ⟶ (∀ x4 : ι → ι . ∀ x5 : ((ι → ι → ι) → ι) → ι → (ι → ι) → ι . ∀ x6 : ι → (ι → ι → ι) → ι . ∀ x7 . x2 (λ x9 . 0) (λ x9 . x2 (λ x10 . x0 (λ x11 . 0) (λ x11 x12 . λ x13 : ι → ι . λ x14 . x3 (λ x15 : (((ι → ι) → ι → ι) → ι → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι . Inj0 0) (x13 0)) (λ x11 : ι → ι → ι . λ x12 : ι → ι . λ x13 . 0)) (λ x10 . x0 (λ x11 . x7) (λ x11 x12 . λ x13 : ι → ι . λ x14 . 0) (λ x11 : ι → ι → ι . λ x12 : ι → ι . Inj1))) = Inj1 0) ⟶ (∀ x4 : ((ι → ι) → ι) → ι . ∀ x5 . ∀ x6 : ((ι → ι) → ι) → ι . ∀ x7 : (ι → ι) → ι → ι . x2 (λ x9 . Inj0 (x3 (λ x10 : (((ι → ι) → ι → ι) → ι → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι . x2 (λ x11 . x2 (λ x12 . 0) (λ x12 . 0)) (λ x11 . 0)) x5)) (λ x9 . x6 (λ x10 : ι → ι . x2 (λ x11 . x3 (λ x12 : (((ι → ι) → ι → ι) → ι → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι . setsum 0 0) 0) (λ x11 . 0))) = setsum (setsum 0 0) 0) ⟶ (∀ x4 . ∀ x5 : (ι → ι) → ι → ι . ∀ x6 x7 . x1 (λ x9 : (((ι → ι) → ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . λ x10 : ((ι → ι) → ι → ι) → (ι → ι) → ι . 0) x7 0 0 = x7) ⟶ (∀ x4 x5 x6 : ι → ι . ∀ x7 . x1 (λ x9 : (((ι → ι) → ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . λ x10 : ((ι → ι) → ι → ι) → (ι → ι) → ι . Inj1 0) (x6 0) (x1 (λ x9 : (((ι → ι) → ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . λ x10 : ((ι → ι) → ι → ι) → (ι → ι) → ι . x7) (Inj0 (x4 (x6 0))) (setsum (Inj1 (x3 (λ x9 : (((ι → ι) → ι → ι) → ι → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι . 0) 0)) (x6 0)) 0) (x6 (x0 (λ x9 . Inj1 (x5 0)) (λ x9 x10 . λ x11 : ι → ι . λ x12 . x2 (λ x13 . Inj0 0) (λ x13 . Inj1 0)) (λ x9 : ι → ι → ι . λ x10 : ι → ι . λ x11 . 0))) = setsum (x0 (λ x9 . Inj0 0) (λ x9 x10 . λ x11 : ι → ι . λ x12 . x12) (λ x9 : ι → ι → ι . λ x10 : ι → ι . λ x11 . 0)) 0) ⟶ (∀ x4 . ∀ x5 x6 : ι → ι . ∀ x7 . x0 (λ x9 . setsum (Inj0 0) (x0 (λ x10 . Inj0 (x3 (λ x11 : (((ι → ι) → ι → ι) → ι → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι . 0) 0)) (λ x10 x11 . λ x12 : ι → ι . λ x13 . x3 (λ x14 : (((ι → ι) → ι → ι) → ι → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι . x2 (λ x15 . 0) (λ x15 . 0)) x10) (λ x10 : ι → ι → ι . λ x11 : ι → ι . λ x12 . x3 (λ x13 : (((ι → ι) → ι → ι) → ι → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι . x12) 0))) (λ x9 x10 . λ x11 : ι → ι . λ x12 . x2 (λ x13 . x10) (λ x13 . x10)) (λ x9 : ι → ι → ι . λ x10 : ι → ι . λ x11 . x1 (λ x12 : (((ι → ι) → ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . λ x13 : ((ι → ι) → ι → ι) → (ι → ι) → ι . 0) (x9 (Inj1 0) x7) x7 (x0 (λ x12 . x11) (λ x12 x13 . λ x14 : ι → ι . λ x15 . Inj0 0) (λ x12 : ι → ι → ι . λ x13 : ι → ι . λ x14 . setsum 0 (Inj1 0)))) = setsum (setsum (x0 (λ x9 . 0) (λ x9 x10 . λ x11 : ι → ι . x11) (λ x9 : ι → ι → ι . λ x10 : ι → ι . λ x11 . setsum x11 (Inj1 0))) (Inj0 (setsum 0 (setsum 0 0)))) (setsum 0 0)) ⟶ (∀ x4 : (ι → ι) → ι . ∀ x5 : ((ι → ι → ι) → (ι → ι) → ι → ι) → ι → (ι → ι) → ι . ∀ x6 : ι → (ι → ι) → (ι → ι) → ι → ι . ∀ x7 : (ι → ι) → ι → ι . x0 (λ x9 . 0) (λ x9 x10 . λ x11 : ι → ι . λ x12 . 0) (λ x9 : ι → ι → ι . λ x10 : ι → ι . λ x11 . setsum (x2 (λ x12 . Inj0 0) (λ x12 . x11)) (x2 (λ x12 . x2 (λ x13 . Inj1 0) (λ x13 . Inj1 0)) (λ x12 . 0))) = x7 (λ x9 . Inj1 (x3 (λ x10 : (((ι → ι) → ι → ι) → ι → ι → ι) → ((ι → ι) → ι → ι) → (ι → ι) → ι . x2 (λ x11 . 0) (λ x11 . x0 (λ x12 . 0) (λ x12 x13 . λ x14 : ι → ι . λ x15 . 0) (λ x12 : ι → ι → ι . λ x13 : ι → ι . λ x14 . 0))) (Inj0 0))) (Inj0 0)) ⟶ False |
|