Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCit../3baeb..
PUhbm../aed14..
vout
PrCit../5f733.. 5.75 bars
TMTWv../f821c.. negprop ownership controlledby Pr4zB.. upto 0
TMch6../06864.. negprop ownership controlledby Pr4zB.. upto 0
TMcGK../2c2a5.. ownership of ae1d6.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMTqV../7ccd9.. ownership of 7e98a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZLg../86dac.. ownership of 69625.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMUrP../2db44.. ownership of ccaec.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMT2i../caad8.. ownership of cedc9.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMP7z../07161.. ownership of 84995.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUhrQ../5c921.. doc published by Pr4zB..
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition u4 := ordsucc u3
Definition u5 := ordsucc u4
Definition u6 := ordsucc u5
Definition u7 := ordsucc u6
Definition u8 := ordsucc u7
Definition u9 := ordsucc u8
Definition u10 := ordsucc u9
Definition u11 := ordsucc u10
Definition u12 := ordsucc u11
Definition u13 := ordsucc u12
Param atleastpatleastp : ιιο
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Param Church13_p : (ιιιιιιιιιιιιιι) → ο
Param TwoRamseyGraph_3_5_Church13 : (ιιιιιιιιιιιιιι) → (ιιιιιιιιιιιιιι) → ιιι
Definition TwoRamseyGraph_3_5_13 := λ x0 x1 . ∀ x2 x3 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . Church13_p x2Church13_p x3x0 = x2 0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12x1 = x3 0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12TwoRamseyGraph_3_5_Church13 x2 x3 = λ x5 x6 . x5
Known 3ed86.. : ∀ x0 . atleastp u5 x0∀ x1 : ο . (∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0(x2 = x3∀ x7 : ο . x7)(x2 = x4∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x2 = x6∀ x7 : ο . x7)(x3 = x4∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x3 = x6∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)(x4 = x6∀ x7 : ο . x7)(x5 = x6∀ x7 : ο . x7)x1)x1
Known 783ed.. : ∀ x0 . x0u13∀ x1 : ο . (∀ x2 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . Church13_p x2x0 = x2 0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12x1)x1
Known 4a8a6.. : ∀ x0 x1 x2 x3 x4 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . Church13_p x0Church13_p x1Church13_p x2Church13_p x3Church13_p x4(x0 = x1∀ x5 : ο . x5)(x0 = x2∀ x5 : ο . x5)(x0 = x3∀ x5 : ο . x5)(x0 = x4∀ x5 : ο . x5)(x1 = x2∀ x5 : ο . x5)(x1 = x3∀ x5 : ο . x5)(x1 = x4∀ x5 : ο . x5)(x2 = x3∀ x5 : ο . x5)(x2 = x4∀ x5 : ο . x5)(x3 = x4∀ x5 : ο . x5)(TwoRamseyGraph_3_5_Church13 x0 x1 = λ x6 x7 . x7)(TwoRamseyGraph_3_5_Church13 x0 x2 = λ x6 x7 . x7)(TwoRamseyGraph_3_5_Church13 x0 x3 = λ x6 x7 . x7)(TwoRamseyGraph_3_5_Church13 x0 x4 = λ x6 x7 . x7)(TwoRamseyGraph_3_5_Church13 x1 x2 = λ x6 x7 . x7)(TwoRamseyGraph_3_5_Church13 x1 x3 = λ x6 x7 . x7)(TwoRamseyGraph_3_5_Church13 x1 x4 = λ x6 x7 . x7)(TwoRamseyGraph_3_5_Church13 x2 x3 = λ x6 x7 . x7)(TwoRamseyGraph_3_5_Church13 x2 x4 = λ x6 x7 . x7)(TwoRamseyGraph_3_5_Church13 x3 x4 = λ x6 x7 . x7)False
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known cd49f.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . Church13_p x0Church13_p x1or (TwoRamseyGraph_3_5_Church13 x0 x1 = λ x3 x4 . x3) (TwoRamseyGraph_3_5_Church13 x0 x1 = λ x3 x4 . x4)
Known FalseEFalseE : False∀ x0 : ο . x0
Known d7c49.. : ∀ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . Church13_p x0Church13_p x1x0 0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 = x1 0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12x0 = x1
Theorem cedc9.. : ∀ x0 . x0u13atleastp u5 x0not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)not (TwoRamseyGraph_3_5_13 x1 x2)) (proof)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition TwoRamseyProp_atleastp := λ x0 x1 x2 . ∀ x3 : ι → ι → ο . (∀ x4 x5 . x3 x4 x5x3 x5 x4)or (∀ x4 : ο . (∀ x5 . and (x5x2) (and (atleastp x0 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)x3 x6 x7))x4)x4) (∀ x4 : ο . (∀ x5 . and (x5x2) (and (atleastp x1 x5) (∀ x6 . x6x5∀ x7 . x7x5(x6 = x7∀ x8 : ο . x8)not (x3 x6 x7)))x4)x4)
Known 09b0c.. : ∀ x0 x1 . TwoRamseyGraph_3_5_13 x0 x1TwoRamseyGraph_3_5_13 x1 x0
Known 0ff84.. : ∀ x0 . x0u13atleastp u3 x0not (∀ x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)TwoRamseyGraph_3_5_13 x1 x2)
Theorem not_TwoRamseyProp_atleast_3_5_13 : not (TwoRamseyProp_atleastp 3 5 13) (proof)
Param TwoRamseyPropTwoRamseyProp : ιιιο
Known TwoRamseyProp_atleastp_atleastp : ∀ x0 x1 x2 x3 x4 . TwoRamseyProp x0 x2 x4atleastp x1 x0atleastp x3 x2TwoRamseyProp_atleastp x1 x3 x4
Known atleastp_ref : ∀ x0 . atleastp x0 x0
Theorem not_TwoRamseyProp_3_5_13not_TwoRamseyProp_3_5_13 : not (TwoRamseyProp 3 5 13) (proof)