Search for blocks/addresses/...

Proofgold Term Root Disambiguation

∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . 62ee1.. x0 x1 x2 x3 x4 x5(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x6 x7 x8 = x6 x9 x10∀ x11 : ο . (x7 = x9x8 = x10x11)x11)(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19)x18)x18)x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19)x18)x18)x17)x17)))) = x6 x11 x14)x13)x13)x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19)x18)x18)x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19)x18)x18)x17)x17)))) = x6 x11 x14)x13)x13)x12)x12)))) = x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17)))) = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x9 = x6 x11 x14)x13)x13)x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17)))) = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x9 = x6 x11 x14)x13)x13)x12)x12)))))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)(x7 = x6 x1 x1∀ x8 : ο . x8)∀ x8 : ο . (∀ x9 . and (prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)) (x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x9 = x6 x11 x14)x13)x13)x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x9 = x6 x11 x14)x13)x13)x12)x12)))) = x6 x2 x1)x8)x8)(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19)x18)x18)x17)x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) = x6 x11 x14)x13)x13)x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19)x18)x18)x17)x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) = x6 x11 x14)x13)x13)x12)x12)))) = x6 (x3 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17)))) = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19)x18)x18)x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19)x18)x18)x17)x17)))) = x6 x11 x14)x13)x13)x12)x12))) (x3 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))))and (11fac.. (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (prim1 x8 x0) (∀ x9 : ο . (∀ x10 . and (prim1 x10 x0) (x7 = x6 x8 x10)x9)x9))) x1) (λ x7 . x6 (prim0 (λ x8 . and (prim1 x8 x0) (x7 = x6 (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x10 x12)x11)x11))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11)x10)x10))) (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x8 = x6 x9 x11)x10)x10)))) (x3 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13)x12)x12))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x11 x13)x12)x12))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11)x10)x10))) (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x8 = x6 x9 x11)x10)x10)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13)x12)x12))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x11 x13)x12)x12))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11)x10)x10))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x11 x13)x12)x12))) x9)))) (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x11 x13)x12)x12))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x8 = x6 x9 x11)x10)x10))))))) ((∀ x7 . prim1 x7 x0x6 x7 x1 = x7)and (and (and (and (and (Subq x0 (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6)) (∀ x7 . prim1 x7 x0prim0 (λ x9 . and (prim1 x9 x0) (∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x7 = x6 x9 x11)x10)x10)) = x7)) (x6 x1 x1 = x1)) (x6 x2 x1 = x2)) (∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x6 (x3 (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x8 = x6 x10 x12)x11)x11)))) (x3 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x8 = x6 x12 x14)x13)x13))) x10)))) = x3 x7 x8)) (∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0x6 (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x8 = x6 x10 x12)x11)x11)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x8 = x6 x12 x14)x13)x13))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x10 x12)x11)x11))) (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x8 = x6 x12 x14)x13)x13))) x10)))) (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x7 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x12 x14)x13)x13))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x8 = x6 x10 x12)x11)x11))))) = x4 x7 x8))
as obj
-
as prop
b1312..
theory
HoTg
stx
2436f..
address
TMXzr..