Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrS9p../8dc62..
PUMRN../dda78..
vout
PrS9p../ff7ce.. 0.00 bars
TMHL9../ae6ac.. ownership of ecc46.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMYxP../06f7a.. ownership of 44c5a.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMWY5../11511.. ownership of a3d6a.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMQEz../f648d.. ownership of 5775c.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMSDT../4f9f6.. ownership of 32437.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TML8W../8133d.. ownership of 731b6.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMGUH../a671c.. ownership of 48da5.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
TMJ7z../e87f3.. ownership of 1a5f6.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0
PUbt6../5aaa4.. doc published by Pr5Zc..
Param SNoSNo : ιο
Param ordsuccordsucc : ιι
Param nat_pnat_p : ιο
Known nat_p_SNonat_p_SNo : ∀ x0 . nat_p x0SNo x0
Known nat_4nat_4 : nat_p 4
Theorem 48da5.. : SNo 4 (proof)
Param SNoLtSNoLt : ιιο
Param ordinalordinal : ιο
Known ordinal_In_SNoLtordinal_In_SNoLt : ∀ x0 . ordinal x0∀ x1 . x1x0SNoLt x1 x0
Known nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0ordinal x0
Known In_0_4In_0_4 : 04
Theorem 32437.. : SNoLt 0 4 (proof)
Param mul_SNomul_SNo : ιιι
Known mul_SNo_assocmul_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (mul_SNo x1 x2) = mul_SNo (mul_SNo x0 x1) x2
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Known mul_SNo_commul_SNo_com : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_SNo x1 x0
Theorem mul_SNo_com_4_inner_midmul_SNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3mul_SNo (mul_SNo x0 x1) (mul_SNo x2 x3) = mul_SNo (mul_SNo x0 x2) (mul_SNo x1 x3) (proof)
Param intint : ι
Param add_SNoadd_SNo : ιιι
Param minus_SNominus_SNo : ιι
Known 88d93.. : ∀ x0 : ι → ο . ∀ x1 x2 : ι → ι → ι . (∀ x3 x4 . x0 x3x0 x4x0 (x1 x3 x4))(∀ x3 x4 . x0 x3x0 x4x0 (x2 x3 x4))(∀ x3 x4 x5 . x0 x3x0 x4x0 x5x1 x3 (x1 x4 x5) = x1 x4 (x1 x3 x5))(∀ x3 x4 x5 . x0 x3x0 x4x0 x5x1 (x1 x3 x4) x5 = x1 x3 (x1 x4 x5))(∀ x3 x4 x5 . x0 x3x0 x4x0 x5x2 x3 (x1 x4 x5) = x1 (x2 x3 x4) (x2 x3 x5))(∀ x3 x4 x5 . x0 x3x0 x4x0 x5x2 (x1 x3 x4) x5 = x1 (x2 x3 x5) (x2 x4 x5))∀ x3 : ι → ι . (∀ x4 . x0 x4x3 x4 = x2 x4 x4)∀ x4 : ι → ι . (∀ x5 . x0 x5x0 (x4 x5))(∀ x5 . x0 x5x4 (x4 x5) = x5)(∀ x5 x6 . x0 x5x0 x6x1 (x4 x5) (x1 x5 x6) = x6)(∀ x5 x6 . x0 x5x0 x6x1 x5 (x1 (x4 x5) x6) = x6)(∀ x5 x6 . x0 x5x0 x6x2 (x4 x5) x6 = x4 (x2 x5 x6))(∀ x5 x6 . x0 x5x0 x6x2 x5 (x4 x6) = x4 (x2 x5 x6))(∀ x5 x6 . x0 x5x0 x6x2 x5 x6 = x2 x6 x5)(∀ x5 x6 x7 x8 . x0 x5x0 x6x0 x7x0 x8x2 (x2 x5 x6) (x2 x7 x8) = x2 (x2 x5 x7) (x2 x6 x8))∀ x5 x6 x7 x8 x9 x10 x11 x12 . x0 x5x0 x6x0 x7x0 x8x0 x9x0 x10x0 x11x0 x12x2 (x1 (x3 x5) (x1 (x3 x6) (x1 (x3 x7) (x3 x8)))) (x1 (x3 x9) (x1 (x3 x10) (x1 (x3 x11) (x3 x12)))) = x1 (x3 (x1 (x2 x5 x10) (x1 (x2 x6 x9) (x1 (x2 x7 x12) (x4 (x2 x8 x11)))))) (x1 (x3 (x1 (x2 x5 x11) (x1 (x4 (x2 x6 x12)) (x1 (x2 x7 x9) (x2 x8 x10))))) (x1 (x3 (x1 (x2 x5 x12) (x1 (x2 x6 x11) (x1 (x4 (x2 x7 x10)) (x2 x8 x9))))) (x3 (x1 (x2 x5 x9) (x1 (x4 (x2 x6 x10)) (x1 (x4 (x2 x7 x11)) (x4 (x2 x8 x12))))))))
Known int_add_SNoint_add_SNo : ∀ x0 . x0int∀ x1 . x1intadd_SNo x0 x1int
Known int_mul_SNoint_mul_SNo : ∀ x0 . x0int∀ x1 . x1intmul_SNo x0 x1int
Known add_SNo_com_3_0_1add_SNo_com_3_0_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo x1 (add_SNo x0 x2)
Known mul_SNo_distrLmul_SNo_distrL : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (add_SNo x1 x2) = add_SNo (mul_SNo x0 x1) (mul_SNo x0 x2)
Known mul_SNo_distrRmul_SNo_distrR : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo (add_SNo x0 x1) x2 = add_SNo (mul_SNo x0 x2) (mul_SNo x1 x2)
Known int_minus_SNoint_minus_SNo : ∀ x0 . x0intminus_SNo x0int
Known minus_SNo_involminus_SNo_invol : ∀ x0 . SNo x0minus_SNo (minus_SNo x0) = x0
Known add_SNo_minus_L2add_SNo_minus_L2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (minus_SNo x0) (add_SNo x0 x1) = x1
Known add_SNo_minus_SNo_prop2add_SNo_minus_SNo_prop2 : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 (add_SNo (minus_SNo x0) x1) = x1
Known mul_SNo_minus_distrLmul_SNo_minus_distrL : ∀ x0 x1 . SNo x0SNo x1mul_SNo (minus_SNo x0) x1 = minus_SNo (mul_SNo x0 x1)
Known mul_SNo_minus_distrRmul_minus_SNo_distrR : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 (minus_SNo x1) = minus_SNo (mul_SNo x0 x1)
Known add_SNo_assocadd_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo (add_SNo x0 x1) x2
Known int_SNoint_SNo : ∀ x0 . x0intSNo x0
Theorem a3d6a.. : ∀ x0 . x0int∀ x1 . x1int∀ x2 . x2int∀ x3 . x3int∀ x4 . x4int∀ x5 . x5intx0 = add_SNo (mul_SNo x2 x2) (add_SNo (mul_SNo x3 x3) (add_SNo (mul_SNo x4 x4) (mul_SNo x5 x5)))∀ x6 . x6int∀ x7 . x7int∀ x8 . x8int∀ x9 . x9intx1 = add_SNo (mul_SNo x6 x6) (add_SNo (mul_SNo x7 x7) (add_SNo (mul_SNo x8 x8) (mul_SNo x9 x9)))mul_SNo x0 x1 = add_SNo (mul_SNo (add_SNo (mul_SNo x2 x7) (add_SNo (mul_SNo x3 x6) (add_SNo (mul_SNo x4 x9) (minus_SNo (mul_SNo x5 x8))))) (add_SNo (mul_SNo x2 x7) (add_SNo (mul_SNo x3 x6) (add_SNo (mul_SNo x4 x9) (minus_SNo (mul_SNo x5 x8)))))) (add_SNo (mul_SNo (add_SNo (mul_SNo x2 x8) (add_SNo (minus_SNo (mul_SNo x3 x9)) (add_SNo (mul_SNo x4 x6) (mul_SNo x5 x7)))) (add_SNo (mul_SNo x2 x8) (add_SNo (minus_SNo (mul_SNo x3 x9)) (add_SNo (mul_SNo x4 x6) (mul_SNo x5 x7))))) (add_SNo (mul_SNo (add_SNo (mul_SNo x2 x9) (add_SNo (mul_SNo x3 x8) (add_SNo (minus_SNo (mul_SNo x4 x7)) (mul_SNo x5 x6)))) (add_SNo (mul_SNo x2 x9) (add_SNo (mul_SNo x3 x8) (add_SNo (minus_SNo (mul_SNo x4 x7)) (mul_SNo x5 x6))))) (mul_SNo (add_SNo (mul_SNo x2 x6) (add_SNo (minus_SNo (mul_SNo x3 x7)) (add_SNo (minus_SNo (mul_SNo x4 x8)) (minus_SNo (mul_SNo x5 x9))))) (add_SNo (mul_SNo x2 x6) (add_SNo (minus_SNo (mul_SNo x3 x7)) (add_SNo (minus_SNo (mul_SNo x4 x8)) (minus_SNo (mul_SNo x5 x9)))))))) (proof)
Param mul_natmul_nat : ιιι
Known c3da7.. : mul_nat 2 2 = 4
Param omegaomega : ι
Known mul_nat_mul_SNomul_nat_mul_SNo : ∀ x0 . x0omega∀ x1 . x1omegamul_nat x0 x1 = mul_SNo x0 x1
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known nat_2nat_2 : nat_p 2
Theorem ecc46.. : mul_SNo 2 2 = 4 (proof)