Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrPP6..
/
4dcdf..
PUftR..
/
35a03..
vout
PrPP6..
/
249ee..
0.00 bars
TMYVn..
/
72aa9..
negprop ownership controlledby
PrGxv..
upto 0
TMcrM..
/
84fd6..
ownership of
6ec25..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMcs..
/
007ff..
ownership of
09fe5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdU9..
/
46652..
ownership of
86fd0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdBS..
/
aa72f..
ownership of
f4fbb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdrf..
/
943e9..
ownership of
da671..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTn5..
/
ac391..
ownership of
52c07..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMd2n..
/
4c588..
ownership of
d4591..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZ1D..
/
3a587..
ownership of
e7a04..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUZzt..
/
83bee..
doc published by
PrGxv..
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x1
)
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
prim1
x3
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
prim1
x5
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Definition
surj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x1
)
(
∀ x3 .
prim1
x3
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
prim1
x5
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
bij_surj
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
surj
x0
x1
x2
(proof)
Definition
False
:=
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Param
48ef8..
:
ι
Param
e5b72..
:
ι
→
ι
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Definition
nIn
:=
λ x0 x1 .
not
(
prim1
x0
x1
)
Known
b2421..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
x1
x2
⟶
prim1
x2
(
1216a..
x0
x1
)
Known
ac5c1..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
x1
x2
Definition
Subq
:=
λ x0 x1 .
∀ x2 .
prim1
x2
x0
⟶
prim1
x2
x1
Known
3daee..
:
∀ x0 x1 .
Subq
x1
x0
⟶
prim1
x1
(
e5b72..
x0
)
Known
d0a1f..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
prim1
x2
x0
Theorem
da671..
:
∀ x0 :
ι → ι
.
not
(
surj
48ef8..
(
e5b72..
48ef8..
)
x0
)
(proof)
Param
c2e41..
:
ι
→
ι
→
ο
Known
64d57..
:
∀ x0 x1 .
c2e41..
x0
x1
⟶
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
x2
)
⟶
x2
Theorem
86fd0..
:
not
(
c2e41..
48ef8..
(
e5b72..
48ef8..
)
)
(proof)
Definition
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x1
)
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Param
a4c2a..
:
ι
→
(
ι
→
ο
) →
(
ι
→
ι
) →
ι
Known
e951d..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
prim1
x3
x0
⟶
x1
x3
⟶
prim1
(
x2
x3
)
(
a4c2a..
x0
x1
x2
)
Known
932b3..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 .
prim1
x3
(
a4c2a..
x0
x1
x2
)
⟶
∀ x4 : ο .
(
∀ x5 .
prim1
x5
x0
⟶
x1
x5
⟶
x3
=
x2
x5
⟶
x4
)
⟶
x4
Theorem
6ec25..
:
∀ x0 :
ι → ι
.
not
(
inj
(
e5b72..
48ef8..
)
48ef8..
x0
)
(proof)