∀ x0 : (((ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι) → ι) → ι → ι → ι → ι → ι . ∀ x1 : (ι → ι → ι) → (((ι → ι) → ι) → ι → ι → ι) → ι . ∀ x2 : (ι → (((ι → ι) → ι → ι) → ι) → ι → (ι → ι) → ι → ι) → (ι → ι) → (((ι → ι) → ι → ι) → (ι → ι) → ι → ι) → ι . ∀ x3 : ((ι → ι) → ι → ι) → ((ι → (ι → ι) → ι → ι) → ι) → ι . (∀ x4 . ∀ x5 : ι → ι . ∀ x6 : ι → ι → ι → ι . ∀ x7 : (ι → ι) → ι . x3 (λ x9 : ι → ι . λ x10 . setsum (x2 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι . λ x13 . λ x14 : ι → ι . λ x15 . 0) (λ x11 . Inj1 (Inj0 0)) (λ x11 : (ι → ι) → ι → ι . λ x12 : ι → ι . λ x13 . 0)) 0) (λ x9 : ι → (ι → ι) → ι → ι . 0) = Inj0 0) ⟶ (∀ x4 x5 . ∀ x6 : ι → ι → ι → ι → ι . ∀ x7 . x3 (λ x9 : ι → ι . λ x10 . x3 (λ x11 : ι → ι . λ x12 . setsum (x2 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → ι . λ x15 . λ x16 : ι → ι . λ x17 . x2 (λ x18 . λ x19 : ((ι → ι) → ι → ι) → ι . λ x20 . λ x21 : ι → ι . λ x22 . 0) (λ x18 . 0) (λ x18 : (ι → ι) → ι → ι . λ x19 : ι → ι . λ x20 . 0)) (λ x13 . Inj1 0) (λ x13 : (ι → ι) → ι → ι . λ x14 : ι → ι . λ x15 . setsum 0 0)) (x0 (λ x13 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . x2 (λ x14 . λ x15 : ((ι → ι) → ι → ι) → ι . λ x16 . λ x17 : ι → ι . λ x18 . 0) (λ x14 . 0) (λ x14 : (ι → ι) → ι → ι . λ x15 : ι → ι . λ x16 . 0)) (setsum 0 0) (x2 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → ι . λ x15 . λ x16 : ι → ι . λ x17 . 0) (λ x13 . 0) (λ x13 : (ι → ι) → ι → ι . λ x14 : ι → ι . λ x15 . 0)) 0 0)) (λ x11 : ι → (ι → ι) → ι → ι . x9 (x0 (λ x12 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . 0) (x1 (λ x12 x13 . 0) (λ x12 : (ι → ι) → ι . λ x13 x14 . 0)) (x3 (λ x12 : ι → ι . λ x13 . 0) (λ x12 : ι → (ι → ι) → ι → ι . 0)) (x2 (λ x12 . λ x13 : ((ι → ι) → ι → ι) → ι . λ x14 . λ x15 : ι → ι . λ x16 . 0) (λ x12 . 0) (λ x12 : (ι → ι) → ι → ι . λ x13 : ι → ι . λ x14 . 0)) (Inj1 0)))) (λ x9 : ι → (ι → ι) → ι → ι . 0) = setsum (Inj0 (Inj0 (setsum 0 x7))) (x2 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι . λ x11 . λ x12 : ι → ι . λ x13 . setsum (setsum x11 (setsum 0 0)) (x1 (λ x14 x15 . x15) (λ x14 : (ι → ι) → ι . λ x15 x16 . x14 (λ x17 . 0)))) (λ x9 . Inj0 (Inj0 x7)) (λ x9 : (ι → ι) → ι → ι . λ x10 : ι → ι . λ x11 . x1 (λ x12 x13 . setsum (Inj1 0) (x0 (λ x14 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . 0) 0 0 0 0)) (λ x12 : (ι → ι) → ι . λ x13 x14 . x14)))) ⟶ (∀ x4 . ∀ x5 : (((ι → ι) → ι) → (ι → ι) → ι) → ι . ∀ x6 : ι → ι . ∀ x7 : ((ι → ι) → ι) → ι . x2 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι . λ x11 . λ x12 : ι → ι . λ x13 . x2 (λ x14 . λ x15 : ((ι → ι) → ι → ι) → ι . λ x16 . λ x17 : ι → ι . λ x18 . 0) (x0 (λ x14 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . setsum 0 0) x11 x11 (setsum (setsum 0 0) 0)) (λ x14 : (ι → ι) → ι → ι . λ x15 : ι → ι . λ x16 . x15 (x14 (λ x17 . 0) 0))) (λ x9 . x6 (Inj0 0)) (λ x9 : (ι → ι) → ι → ι . λ x10 : ι → ι . λ x11 . x10 (setsum 0 (x7 (λ x12 : ι → ι . Inj1 0)))) = x2 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι . λ x11 . λ x12 : ι → ι . λ x13 . Inj1 0) (λ x9 . setsum (x0 (λ x10 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . setsum 0 (x3 (λ x11 : ι → ι . λ x12 . 0) (λ x11 : ι → (ι → ι) → ι → ι . 0))) 0 0 (x3 (λ x10 : ι → ι . λ x11 . x7 (λ x12 : ι → ι . 0)) (λ x10 : ι → (ι → ι) → ι → ι . x6 0)) (x6 0)) (x2 (λ x10 . λ x11 : ((ι → ι) → ι → ι) → ι . λ x12 . λ x13 : ι → ι . λ x14 . 0) (x0 (λ x10 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . x0 (λ x11 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . 0) 0 0 0 0) (x6 0) (setsum 0 0) (x6 0)) (λ x10 : (ι → ι) → ι → ι . λ x11 : ι → ι . x11))) (λ x9 : (ι → ι) → ι → ι . λ x10 : ι → ι . Inj1)) ⟶ (∀ x4 x5 : ι → ι . ∀ x6 . ∀ x7 : (((ι → ι) → ι) → ι) → ι . x2 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι . λ x11 . λ x12 : ι → ι . λ x13 . 0) (λ x9 . setsum 0 x6) (λ x9 : (ι → ι) → ι → ι . λ x10 : ι → ι . λ x11 . setsum 0 (setsum (x3 (λ x12 : ι → ι . λ x13 . 0) (λ x12 : ι → (ι → ι) → ι → ι . 0)) 0)) = setsum (x0 (λ x9 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . x5 (x5 (x1 (λ x10 x11 . 0) (λ x10 : (ι → ι) → ι . λ x11 x12 . 0)))) 0 (Inj0 (x4 x6)) (x1 (λ x9 x10 . 0) (λ x9 : (ι → ι) → ι . λ x10 x11 . x2 (λ x12 . λ x13 : ((ι → ι) → ι → ι) → ι . λ x14 . λ x15 : ι → ι . λ x16 . x15 0) (λ x12 . x1 (λ x13 x14 . 0) (λ x13 : (ι → ι) → ι . λ x14 x15 . 0)) (λ x12 : (ι → ι) → ι → ι . λ x13 : ι → ι . λ x14 . x14))) (x5 0)) (Inj1 (x7 (λ x9 : (ι → ι) → ι . x1 (λ x10 x11 . x3 (λ x12 : ι → ι . λ x13 . 0) (λ x12 : ι → (ι → ι) → ι → ι . 0)) (λ x10 : (ι → ι) → ι . λ x11 x12 . x0 (λ x13 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . 0) 0 0 0 0))))) ⟶ (∀ x4 : ι → (ι → ι → ι) → ι . ∀ x5 : ι → (ι → ι → ι) → (ι → ι) → ι → ι . ∀ x6 x7 . x1 (λ x9 x10 . x10) (λ x9 : (ι → ι) → ι . λ x10 x11 . 0) = x5 (x1 (λ x9 x10 . x0 (λ x11 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . x9) (Inj1 (Inj1 0)) (x1 (λ x11 x12 . x9) (λ x11 : (ι → ι) → ι . λ x12 x13 . Inj1 0)) (setsum (x0 (λ x11 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . 0) 0 0 0 0) x7) (Inj1 0)) (λ x9 : (ι → ι) → ι . λ x10 x11 . Inj0 x7)) (λ x9 x10 . Inj0 (x0 (λ x11 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . 0) (x3 (λ x11 : ι → ι . λ x12 . x2 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → ι . λ x15 . λ x16 : ι → ι . λ x17 . 0) (λ x13 . 0) (λ x13 : (ι → ι) → ι → ι . λ x14 : ι → ι . λ x15 . 0)) (λ x11 : ι → (ι → ι) → ι → ι . 0)) (x1 (λ x11 x12 . x11) (λ x11 : (ι → ι) → ι . λ x12 x13 . 0)) 0 (Inj1 0))) (λ x9 . Inj1 (setsum (Inj1 (x5 0 (λ x10 x11 . 0) (λ x10 . 0) 0)) x6)) (x4 (x2 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι . λ x11 . λ x12 : ι → ι . λ x13 . x13) (λ x9 . x2 (λ x10 . λ x11 : ((ι → ι) → ι → ι) → ι . λ x12 . λ x13 : ι → ι . λ x14 . x1 (λ x15 x16 . 0) (λ x15 : (ι → ι) → ι . λ x16 x17 . 0)) (λ x10 . x1 (λ x11 x12 . 0) (λ x11 : (ι → ι) → ι . λ x12 x13 . 0)) (λ x10 : (ι → ι) → ι → ι . λ x11 : ι → ι . λ x12 . 0)) (λ x9 : (ι → ι) → ι → ι . λ x10 : ι → ι . λ x11 . x1 (λ x12 x13 . x13) (λ x12 : (ι → ι) → ι . λ x13 x14 . setsum 0 0))) (λ x9 x10 . x10))) ⟶ (∀ x4 . ∀ x5 : (ι → ι) → ι . ∀ x6 : ι → ((ι → ι) → ι) → ι . ∀ x7 : (ι → ι → ι) → (ι → ι) → ι . x1 (λ x9 x10 . x6 (x7 (λ x11 x12 . 0) (λ x11 . x9)) (λ x11 : ι → ι . Inj0 (setsum x10 (x3 (λ x12 : ι → ι . λ x13 . 0) (λ x12 : ι → (ι → ι) → ι → ι . 0))))) (λ x9 : (ι → ι) → ι . λ x10 x11 . setsum (x9 (λ x12 . x9 (λ x13 . x1 (λ x14 x15 . 0) (λ x14 : (ι → ι) → ι . λ x15 x16 . 0)))) (x2 (λ x12 . λ x13 : ((ι → ι) → ι → ι) → ι . λ x14 . λ x15 : ι → ι . λ x16 . 0) (λ x12 . x3 (λ x13 : ι → ι . λ x14 . x13 0) (λ x13 : ι → (ι → ι) → ι → ι . x0 (λ x14 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . 0) 0 0 0 0)) (λ x12 : (ι → ι) → ι → ι . λ x13 : ι → ι . λ x14 . x1 (λ x15 x16 . setsum 0 0) (λ x15 : (ι → ι) → ι . λ x16 x17 . x17)))) = x6 (setsum (x2 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι . λ x11 . λ x12 : ι → ι . λ x13 . x3 (λ x14 : ι → ι . λ x15 . Inj1 0) (λ x14 : ι → (ι → ι) → ι → ι . x1 (λ x15 x16 . 0) (λ x15 : (ι → ι) → ι . λ x16 x17 . 0))) (λ x9 . Inj1 0) (λ x9 : (ι → ι) → ι → ι . λ x10 : ι → ι . λ x11 . x3 (λ x12 : ι → ι . λ x13 . x2 (λ x14 . λ x15 : ((ι → ι) → ι → ι) → ι . λ x16 . λ x17 : ι → ι . λ x18 . 0) (λ x14 . 0) (λ x14 : (ι → ι) → ι → ι . λ x15 : ι → ι . λ x16 . 0)) (λ x12 : ι → (ι → ι) → ι → ι . setsum 0 0))) (Inj1 (setsum (setsum 0 0) (x5 (λ x9 . 0))))) (λ x9 : ι → ι . setsum (x2 (λ x10 . λ x11 : ((ι → ι) → ι → ι) → ι . λ x12 . λ x13 : ι → ι . λ x14 . x1 (λ x15 x16 . Inj0 0) (λ x15 : (ι → ι) → ι . λ x16 x17 . setsum 0 0)) (λ x10 . 0) (λ x10 : (ι → ι) → ι → ι . λ x11 : ι → ι . λ x12 . x2 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → ι . λ x15 . λ x16 : ι → ι . λ x17 . x16 0) (λ x13 . x1 (λ x14 x15 . 0) (λ x14 : (ι → ι) → ι . λ x15 x16 . 0)) (λ x13 : (ι → ι) → ι → ι . λ x14 : ι → ι . λ x15 . 0))) 0)) ⟶ (∀ x4 x5 x6 x7 . x0 (λ x9 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . 0) 0 0 0 x5 = Inj0 x7) ⟶ (∀ x4 : (ι → (ι → ι) → ι → ι) → (ι → ι) → (ι → ι) → ι → ι . ∀ x5 : (((ι → ι) → ι) → ι) → ι . ∀ x6 : ((ι → ι → ι) → ι → ι) → ι . ∀ x7 . x0 (λ x9 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . x2 (λ x10 . λ x11 : ((ι → ι) → ι → ι) → ι . λ x12 . λ x13 : ι → ι . λ x14 . x13 (x13 (x3 (λ x15 : ι → ι . λ x16 . 0) (λ x15 : ι → (ι → ι) → ι → ι . 0)))) (λ x10 . setsum 0 0) (λ x10 : (ι → ι) → ι → ι . λ x11 : ι → ι . λ x12 . x3 (λ x13 : ι → ι . λ x14 . setsum x14 x14) (λ x13 : ι → (ι → ι) → ι → ι . x11 (setsum 0 0)))) 0 0 (x2 (λ x9 . λ x10 : ((ι → ι) → ι → ι) → ι . λ x11 . λ x12 : ι → ι . λ x13 . Inj1 0) (λ x9 . setsum (Inj0 (Inj0 0)) (x5 (λ x10 : (ι → ι) → ι . setsum 0 0))) (λ x9 : (ι → ι) → ι → ι . λ x10 : ι → ι . λ x11 . x0 (λ x12 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . x2 (λ x13 . λ x14 : ((ι → ι) → ι → ι) → ι . λ x15 . λ x16 : ι → ι . λ x17 . Inj0 0) (λ x13 . Inj0 0) (λ x13 : (ι → ι) → ι → ι . λ x14 : ι → ι . λ x15 . 0)) 0 (x2 (λ x12 . λ x13 : ((ι → ι) → ι → ι) → ι . λ x14 . λ x15 : ι → ι . λ x16 . x1 (λ x17 x18 . 0) (λ x17 : (ι → ι) → ι . λ x18 x19 . 0)) (λ x12 . x10 0) (λ x12 : (ι → ι) → ι → ι . λ x13 : ι → ι . λ x14 . Inj1 0)) (x3 (λ x12 : ι → ι . λ x13 . 0) (λ x12 : ι → (ι → ι) → ι → ι . x10 0)) (x10 (setsum 0 0)))) (setsum (Inj1 (x5 (λ x9 : (ι → ι) → ι . x1 (λ x10 x11 . 0) (λ x10 : (ι → ι) → ι . λ x11 x12 . 0)))) (x1 (λ x9 x10 . setsum (x2 (λ x11 . λ x12 : ((ι → ι) → ι → ι) → ι . λ x13 . λ x14 : ι → ι . λ x15 . 0) (λ x11 . 0) (λ x11 : (ι → ι) → ι → ι . λ x12 : ι → ι . λ x13 . 0)) (x1 (λ x11 x12 . 0) (λ x11 : (ι → ι) → ι . λ x12 x13 . 0))) (λ x9 : (ι → ι) → ι . λ x10 x11 . x1 (λ x12 x13 . x0 (λ x14 : (ι → (ι → ι) → ι) → ((ι → ι) → ι → ι) → ι . 0) 0 0 0 0) (λ x12 : (ι → ι) → ι . λ x13 x14 . 0)))) = Inj0 (Inj0 (Inj0 0))) ⟶ False |
|