Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr5hG..
/
2aeec..
PUhqu..
/
27017..
vout
Pr5hG..
/
5446f..
19.98 bars
TMaX7..
/
f6e96..
ownership of
cba06..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJQU..
/
3d279..
ownership of
27e1d..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMXMy..
/
b681a..
ownership of
58dd3..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMU9z..
/
509a8..
ownership of
fd44c..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMMFp..
/
061c9..
ownership of
92452..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMSRj..
/
56da1..
ownership of
0c469..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMXjU..
/
66530..
ownership of
954fe..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMaM5..
/
051dc..
ownership of
01d19..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMNaQ..
/
e7080..
ownership of
251f9..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMHKn..
/
27c45..
ownership of
1efdb..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMWLr..
/
81367..
ownership of
f8454..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TML4H..
/
28969..
ownership of
60d41..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJ4p..
/
2b993..
ownership of
0765b..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMW54..
/
98db2..
ownership of
d4833..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMSCn..
/
b4b0f..
ownership of
9be39..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJJg..
/
bea97..
ownership of
efd3a..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMKhU..
/
08b9a..
ownership of
679bf..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMWeA..
/
884d2..
ownership of
218d3..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMXsC..
/
65321..
ownership of
f1509..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMWyT..
/
912db..
ownership of
c61eb..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMXjF..
/
a109e..
ownership of
a85fe..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMW7Z..
/
04cc3..
ownership of
8352e..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMbdU..
/
706a4..
ownership of
abe20..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMGRt..
/
6e827..
ownership of
aed03..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMTzG..
/
9698f..
ownership of
b433b..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMGbu..
/
1923b..
ownership of
302fc..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMVGi..
/
ea6a1..
ownership of
85138..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMX35..
/
36d9f..
ownership of
165cd..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMWtK..
/
c112f..
ownership of
8841e..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMWoZ..
/
22a4d..
ownership of
3cfc7..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMc6f..
/
5907e..
ownership of
6333a..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TML8q..
/
d39da..
ownership of
94e49..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMZPz..
/
6a0c5..
ownership of
0109e..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMb8n..
/
32303..
ownership of
ae914..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMPsd..
/
4903b..
ownership of
db44c..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMF4X..
/
ad977..
ownership of
29aba..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJDy..
/
98dfa..
ownership of
265b2..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMZLs..
/
3180f..
ownership of
f36bc..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMFPc..
/
cab4b..
ownership of
407c5..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMEt9..
/
17f9e..
ownership of
611ba..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJpT..
/
bb54c..
ownership of
4b836..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMWee..
/
acbc2..
ownership of
c833f..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMSZt..
/
fb7a1..
ownership of
119ff..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJ3J..
/
d41b5..
ownership of
9f775..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMGzu..
/
af8f7..
ownership of
c7259..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMGB3..
/
17269..
ownership of
e5405..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMbRJ..
/
2b607..
ownership of
a1021..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMQgd..
/
50d9f..
ownership of
38dd9..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMHpe..
/
a9e7d..
ownership of
5b1d1..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMMXH..
/
b31b6..
ownership of
e8720..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMVey..
/
bc6d2..
ownership of
ffaf6..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMVG5..
/
ccc48..
ownership of
61bbe..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMMxv..
/
a5b28..
ownership of
d75af..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMPvy..
/
77167..
ownership of
8058d..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMPc9..
/
65740..
ownership of
3383b..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMHJ1..
/
8eade..
ownership of
39f82..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJC4..
/
fd9e7..
ownership of
9c479..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
PUajT..
/
92d6b..
doc published by
Pr6Pc..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
explicit_Ring
explicit_Ring
:=
λ x0 x1 .
λ x2 x3 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x2
x4
x5
∈
x0
)
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x2
x4
(
x2
x5
x6
)
=
x2
(
x2
x4
x5
)
x6
)
)
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x2
x4
x5
=
x2
x5
x4
)
)
(
x1
∈
x0
)
)
(
∀ x4 .
x4
∈
x0
⟶
x2
x1
x4
=
x4
)
)
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
x2
x4
x6
=
x1
)
⟶
x5
)
⟶
x5
)
)
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x3
x4
x5
∈
x0
)
)
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x4
(
x3
x5
x6
)
=
x3
(
x3
x4
x5
)
x6
)
)
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x4
(
x2
x5
x6
)
=
x2
(
x3
x4
x5
)
(
x3
x4
x6
)
)
)
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
(
x2
x4
x5
)
x6
=
x2
(
x3
x4
x6
)
(
x3
x5
x6
)
)
Known
and4I
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Known
and7I
and7I
:
∀ x0 x1 x2 x3 x4 x5 x6 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
Theorem
explicit_Ring_I
explicit_Ring_I
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x2
x4
x5
∈
x0
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x2
x4
(
x2
x5
x6
)
=
x2
(
x2
x4
x5
)
x6
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x2
x4
x5
=
x2
x5
x4
)
⟶
x1
∈
x0
⟶
(
∀ x4 .
x4
∈
x0
⟶
x2
x1
x4
=
x4
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
x2
x4
x6
=
x1
)
⟶
x5
)
⟶
x5
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x3
x4
x5
∈
x0
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x4
(
x3
x5
x6
)
=
x3
(
x3
x4
x5
)
x6
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x4
(
x2
x5
x6
)
=
x2
(
x3
x4
x5
)
(
x3
x4
x6
)
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
(
x2
x4
x5
)
x6
=
x2
(
x3
x4
x6
)
(
x3
x5
x6
)
)
⟶
explicit_Ring
x0
x1
x2
x3
(proof)
Known
and4E
and4E
:
∀ x0 x1 x2 x3 : ο .
and
(
and
(
and
x0
x1
)
x2
)
x3
⟶
∀ x4 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
)
⟶
x4
Known
and7E
and7E
:
∀ x0 x1 x2 x3 x4 x5 x6 : ο .
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
⟶
∀ x7 : ο .
(
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
)
⟶
x7
Theorem
explicit_Ring_E
explicit_Ring_E
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 : ο .
(
explicit_Ring
x0
x1
x2
x3
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x2
x5
x6
∈
x0
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x2
x5
(
x2
x6
x7
)
=
x2
(
x2
x5
x6
)
x7
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x2
x5
x6
=
x2
x6
x5
)
⟶
x1
∈
x0
⟶
(
∀ x5 .
x5
∈
x0
⟶
x2
x1
x5
=
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
x0
)
(
x2
x5
x7
=
x1
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
∈
x0
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
(
x3
x6
x7
)
=
x3
(
x3
x5
x6
)
x7
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
(
x2
x6
x7
)
=
x2
(
x3
x5
x6
)
(
x3
x5
x7
)
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
(
x2
x5
x6
)
x7
=
x2
(
x3
x5
x7
)
(
x3
x6
x7
)
)
⟶
x4
)
⟶
explicit_Ring
x0
x1
x2
x3
⟶
x4
(proof)
Definition
explicit_Ring_minus
explicit_Ring_minus
:=
λ x0 x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 .
prim0
(
λ x5 .
and
(
x5
∈
x0
)
(
x2
x4
x5
=
x1
)
)
Known
Eps_i_ex
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Theorem
explicit_Ring_minus_prop
explicit_Ring_minus_prop
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
explicit_Ring
x0
x1
x2
x3
⟶
∀ x4 .
x4
∈
x0
⟶
and
(
explicit_Ring_minus
x0
x1
x2
x3
x4
∈
x0
)
(
x2
x4
(
explicit_Ring_minus
x0
x1
x2
x3
x4
)
=
x1
)
(proof)
Theorem
explicit_Ring_minus_clos
explicit_Ring_minus_clos
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
explicit_Ring
x0
x1
x2
x3
⟶
∀ x4 .
x4
∈
x0
⟶
explicit_Ring_minus
x0
x1
x2
x3
x4
∈
x0
(proof)
Theorem
explicit_Ring_minus_R
explicit_Ring_minus_R
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
explicit_Ring
x0
x1
x2
x3
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x4
(
explicit_Ring_minus
x0
x1
x2
x3
x4
)
=
x1
(proof)
Theorem
explicit_Ring_minus_L
explicit_Ring_minus_L
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
explicit_Ring
x0
x1
x2
x3
⟶
∀ x4 .
x4
∈
x0
⟶
x2
(
explicit_Ring_minus
x0
x1
x2
x3
x4
)
x4
=
x1
(proof)
Theorem
explicit_Ring_plus_cancelL
explicit_Ring_plus_cancelL
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
explicit_Ring
x0
x1
x2
x3
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x2
x4
x5
=
x2
x4
x6
⟶
x5
=
x6
(proof)
Theorem
explicit_Ring_plus_cancelR
explicit_Ring_plus_cancelR
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
explicit_Ring
x0
x1
x2
x3
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x2
x4
x6
=
x2
x5
x6
⟶
x4
=
x5
(proof)
Theorem
explicit_Ring_minus_invol
explicit_Ring_minus_invol
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
explicit_Ring
x0
x1
x2
x3
⟶
∀ x4 .
x4
∈
x0
⟶
explicit_Ring_minus
x0
x1
x2
x3
(
explicit_Ring_minus
x0
x1
x2
x3
x4
)
=
x4
(proof)
Definition
explicit_Ring_with_id
explicit_Ring_with_id
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
∈
x0
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
(
x3
x6
x7
)
=
x3
(
x3
x5
x6
)
x7
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
=
x3
x6
x5
)
)
(
x1
∈
x0
)
)
(
∀ x5 .
x5
∈
x0
⟶
x3
x1
x5
=
x5
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
x0
)
(
x3
x5
x7
=
x1
)
⟶
x6
)
⟶
x6
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
x6
∈
x0
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x5
(
x4
x6
x7
)
=
x4
(
x4
x5
x6
)
x7
)
)
(
x2
∈
x0
)
)
(
x2
=
x1
⟶
∀ x5 : ο .
x5
)
)
(
∀ x5 .
x5
∈
x0
⟶
x4
x2
x5
=
x5
)
)
(
∀ x5 .
x5
∈
x0
⟶
x4
x5
x2
=
x5
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x5
(
x3
x6
x7
)
=
x3
(
x4
x5
x6
)
(
x4
x5
x7
)
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
(
x3
x5
x6
)
x7
=
x3
(
x4
x5
x7
)
(
x4
x6
x7
)
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
explicit_Ring_with_id_I
explicit_Ring_with_id_I
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
∈
x0
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
(
x3
x6
x7
)
=
x3
(
x3
x5
x6
)
x7
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
=
x3
x6
x5
)
⟶
x1
∈
x0
⟶
(
∀ x5 .
x5
∈
x0
⟶
x3
x1
x5
=
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
x0
)
(
x3
x5
x7
=
x1
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
x6
∈
x0
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x5
(
x4
x6
x7
)
=
x4
(
x4
x5
x6
)
x7
)
⟶
x2
∈
x0
⟶
(
x2
=
x1
⟶
∀ x5 : ο .
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
x4
x2
x5
=
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
x4
x5
x2
=
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x5
(
x3
x6
x7
)
=
x3
(
x4
x5
x6
)
(
x4
x5
x7
)
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
(
x3
x5
x6
)
x7
=
x3
(
x4
x5
x7
)
(
x4
x6
x7
)
)
⟶
explicit_Ring_with_id
x0
x1
x2
x3
x4
(proof)
Theorem
explicit_Ring_with_id_E
explicit_Ring_with_id_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 : ο .
(
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
∈
x0
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x3
x6
(
x3
x7
x8
)
=
x3
(
x3
x6
x7
)
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
=
x3
x7
x6
)
⟶
x1
∈
x0
⟶
(
∀ x6 .
x6
∈
x0
⟶
x3
x1
x6
=
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x0
)
(
x3
x6
x8
=
x1
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
∈
x0
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x6
(
x4
x7
x8
)
=
x4
(
x4
x6
x7
)
x8
)
⟶
x2
∈
x0
⟶
(
x2
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
x4
x2
x6
=
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
x4
x6
x2
=
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x6
(
x3
x7
x8
)
=
x3
(
x4
x6
x7
)
(
x4
x6
x8
)
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
(
x3
x6
x7
)
x8
=
x3
(
x4
x6
x8
)
(
x4
x7
x8
)
)
⟶
x5
)
⟶
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
x5
(proof)
Theorem
explicit_Ring_with_id_Ring
explicit_Ring_with_id_Ring
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
explicit_Ring
x0
x1
x3
x4
(proof)
Theorem
explicit_Ring_with_id_minus_clos
explicit_Ring_with_id_minus_clos
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Ring_minus
x0
x1
x3
x4
x5
∈
x0
(proof)
Theorem
explicit_Ring_with_id_minus_R
explicit_Ring_with_id_minus_R
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x3
x5
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
=
x1
(proof)
Theorem
explicit_Ring_with_id_minus_L
explicit_Ring_with_id_minus_L
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x3
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
x5
=
x1
(proof)
Theorem
explicit_Ring_with_id_plus_cancelL
explicit_Ring_with_id_plus_cancelL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
x6
=
x3
x5
x7
⟶
x6
=
x7
(proof)
Theorem
explicit_Ring_with_id_plus_cancelR
explicit_Ring_with_id_plus_cancelR
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
x7
=
x3
x6
x7
⟶
x5
=
x6
(proof)
Theorem
explicit_Ring_with_id_minus_invol
explicit_Ring_with_id_minus_invol
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Ring_minus
x0
x1
x3
x4
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
=
x5
(proof)
Theorem
explicit_Ring_with_id_minus_one_In
explicit_Ring_with_id_minus_one_In
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
explicit_Ring_minus
x0
x1
x3
x4
x2
∈
x0
(proof)
Theorem
explicit_Ring_with_id_zero_multR
explicit_Ring_with_id_zero_multR
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x4
x5
x1
=
x1
(proof)
Theorem
explicit_Ring_with_id_zero_multL
explicit_Ring_with_id_zero_multL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x4
x1
x5
=
x1
(proof)
Theorem
explicit_Ring_with_id_minus_mult
explicit_Ring_with_id_minus_mult
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Ring_minus
x0
x1
x3
x4
x5
=
x4
(
explicit_Ring_minus
x0
x1
x3
x4
x2
)
x5
(proof)
Theorem
explicit_Ring_with_id_mult_minus
explicit_Ring_with_id_mult_minus
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Ring_minus
x0
x1
x3
x4
x5
=
x4
x5
(
explicit_Ring_minus
x0
x1
x3
x4
x2
)
(proof)
Theorem
explicit_Ring_with_id_minus_one_square
explicit_Ring_with_id_minus_one_square
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
x4
(
explicit_Ring_minus
x0
x1
x3
x4
x2
)
(
explicit_Ring_minus
x0
x1
x3
x4
x2
)
=
x2
(proof)
Theorem
explicit_Ring_with_id_minus_square
explicit_Ring_with_id_minus_square
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_Ring_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x4
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
=
x4
x5
x5
(proof)
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
explicit_Ring_with_id_exp_nat
explicit_Ring_with_id_exp_nat
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 .
nat_primrec
x2
(
λ x6 .
x4
x5
)
Definition
explicit_CRing_with_id
explicit_CRing_with_id
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
∈
x0
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
(
x3
x6
x7
)
=
x3
(
x3
x5
x6
)
x7
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
=
x3
x6
x5
)
)
(
x1
∈
x0
)
)
(
∀ x5 .
x5
∈
x0
⟶
x3
x1
x5
=
x5
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
x0
)
(
x3
x5
x7
=
x1
)
⟶
x6
)
⟶
x6
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
x6
∈
x0
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x5
(
x4
x6
x7
)
=
x4
(
x4
x5
x6
)
x7
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
x6
=
x4
x6
x5
)
)
(
x2
∈
x0
)
)
(
x2
=
x1
⟶
∀ x5 : ο .
x5
)
)
(
∀ x5 .
x5
∈
x0
⟶
x4
x2
x5
=
x5
)
)
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x5
(
x3
x6
x7
)
=
x3
(
x4
x5
x6
)
(
x4
x5
x7
)
)
Theorem
explicit_CRing_with_id_I
explicit_CRing_with_id_I
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
∈
x0
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
(
x3
x6
x7
)
=
x3
(
x3
x5
x6
)
x7
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x3
x5
x6
=
x3
x6
x5
)
⟶
x1
∈
x0
⟶
(
∀ x5 .
x5
∈
x0
⟶
x3
x1
x5
=
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 : ο .
(
∀ x7 .
and
(
x7
∈
x0
)
(
x3
x5
x7
=
x1
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
x6
∈
x0
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x5
(
x4
x6
x7
)
=
x4
(
x4
x5
x6
)
x7
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x4
x5
x6
=
x4
x6
x5
)
⟶
x2
∈
x0
⟶
(
x2
=
x1
⟶
∀ x5 : ο .
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
x4
x2
x5
=
x5
)
⟶
(
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x5
(
x3
x6
x7
)
=
x3
(
x4
x5
x6
)
(
x4
x5
x7
)
)
⟶
explicit_CRing_with_id
x0
x1
x2
x3
x4
(proof)
Theorem
explicit_CRing_with_id_E
explicit_CRing_with_id_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 : ο .
(
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
∈
x0
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x3
x6
(
x3
x7
x8
)
=
x3
(
x3
x6
x7
)
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
=
x3
x7
x6
)
⟶
x1
∈
x0
⟶
(
∀ x6 .
x6
∈
x0
⟶
x3
x1
x6
=
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x0
)
(
x3
x6
x8
=
x1
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
∈
x0
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x6
(
x4
x7
x8
)
=
x4
(
x4
x6
x7
)
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
x2
∈
x0
⟶
(
x2
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
x4
x2
x6
=
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x6
(
x3
x7
x8
)
=
x3
(
x4
x6
x7
)
(
x4
x6
x8
)
)
⟶
x5
)
⟶
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
x5
(proof)
Theorem
explicit_CRing_with_id_Ring_with_id
explicit_CRing_with_id_Ring_with_id
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
explicit_Ring_with_id
x0
x1
x2
x3
x4
(proof)
Theorem
explicit_CRing_with_id_Ring
explicit_CRing_with_id_Ring
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
explicit_Ring
x0
x1
x3
x4
(proof)
Theorem
explicit_CRing_with_id_minus_clos
explicit_CRing_with_id_minus_clos
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Ring_minus
x0
x1
x3
x4
x5
∈
x0
(proof)
Theorem
explicit_CRing_with_id_minus_R
explicit_CRing_with_id_minus_R
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x3
x5
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
=
x1
(proof)
Theorem
explicit_CRing_with_id_minus_L
explicit_CRing_with_id_minus_L
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x3
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
x5
=
x1
(proof)
Theorem
explicit_CRing_with_id_plus_cancelL
explicit_CRing_with_id_plus_cancelL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
x6
=
x3
x5
x7
⟶
x6
=
x7
(proof)
Theorem
explicit_CRing_with_id_plus_cancelR
explicit_CRing_with_id_plus_cancelR
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x5
x7
=
x3
x6
x7
⟶
x5
=
x6
(proof)
Theorem
explicit_CRing_with_id_minus_invol
explicit_CRing_with_id_minus_invol
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Ring_minus
x0
x1
x3
x4
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
=
x5
(proof)
Theorem
explicit_CRing_with_id_minus_one_In
explicit_CRing_with_id_minus_one_In
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
explicit_Ring_minus
x0
x1
x3
x4
x2
∈
x0
(proof)
Theorem
explicit_CRing_with_id_zero_multR
explicit_CRing_with_id_zero_multR
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x4
x5
x1
=
x1
(proof)
Theorem
explicit_CRing_with_id_zero_multL
explicit_CRing_with_id_zero_multL
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x4
x1
x5
=
x1
(proof)
Theorem
explicit_CRing_with_id_minus_mult
explicit_CRing_with_id_minus_mult
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Ring_minus
x0
x1
x3
x4
x5
=
x4
(
explicit_Ring_minus
x0
x1
x3
x4
x2
)
x5
(proof)
Theorem
explicit_CRing_with_id_mult_minus
explicit_CRing_with_id_mult_minus
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Ring_minus
x0
x1
x3
x4
x5
=
x4
x5
(
explicit_Ring_minus
x0
x1
x3
x4
x2
)
(proof)
Theorem
explicit_CRing_with_id_minus_one_square
explicit_CRing_with_id_minus_one_square
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
x4
(
explicit_Ring_minus
x0
x1
x3
x4
x2
)
(
explicit_Ring_minus
x0
x1
x3
x4
x2
)
=
x2
(proof)
Theorem
explicit_CRing_with_id_minus_square
explicit_CRing_with_id_minus_square
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x0
⟶
x4
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
(
explicit_Ring_minus
x0
x1
x3
x4
x5
)
=
x4
x5
x5
(proof)
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Param
encode_b
encode_b
:
ι
→
CT2
ι
Definition
pack_b_b_e
pack_b_b_e
:=
λ x0 .
λ x1 x2 :
ι →
ι → ι
.
λ x3 .
lam
4
(
λ x4 .
If_i
(
x4
=
0
)
x0
(
If_i
(
x4
=
1
)
(
encode_b
x0
x1
)
(
If_i
(
x4
=
2
)
(
encode_b
x0
x2
)
x3
)
)
)
Param
ap
ap
:
ι
→
ι
→
ι
Known
pack_b_b_e_0_eq
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 .
x0
=
pack_b_b_e
x1
x2
x3
x4
⟶
x1
=
ap
x0
0
Known
pack_b_b_e_0_eq2
pack_b_b_e_0_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 .
x0
=
ap
(
pack_b_b_e
x0
x1
x2
x3
)
0
Param
decode_b
decode_b
:
ι
→
ι
→
ι
→
ι
Known
pack_b_b_e_1_eq
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 .
x0
=
pack_b_b_e
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
x2
x5
x6
=
decode_b
(
ap
x0
1
)
x5
x6
Known
pack_b_b_e_1_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x1
x4
x5
=
decode_b
(
ap
(
pack_b_b_e
x0
x1
x2
x3
)
1
)
x4
x5
Known
pack_b_b_e_2_eq
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 .
x0
=
pack_b_b_e
x1
x2
x3
x4
⟶
∀ x5 .
x5
∈
x1
⟶
∀ x6 .
x6
∈
x1
⟶
x3
x5
x6
=
decode_b
(
ap
x0
2
)
x5
x6
Known
pack_b_b_e_2_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x2
x4
x5
=
decode_b
(
ap
(
pack_b_b_e
x0
x1
x2
x3
)
2
)
x4
x5
Known
pack_b_b_e_3_eq
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 .
x0
=
pack_b_b_e
x1
x2
x3
x4
⟶
x4
=
ap
x0
3
Known
pack_b_b_e_3_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 .
x3
=
ap
(
pack_b_b_e
x0
x1
x2
x3
)
3
Known
pack_b_b_e_inj
:
∀ x0 x1 .
∀ x2 x3 x4 x5 :
ι →
ι → ι
.
∀ x6 x7 .
pack_b_b_e
x0
x2
x4
x6
=
pack_b_b_e
x1
x3
x5
x7
⟶
and
(
and
(
and
(
x0
=
x1
)
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x2
x8
x9
=
x3
x8
x9
)
)
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x9
∈
x0
⟶
x4
x8
x9
=
x5
x8
x9
)
)
(
x6
=
x7
)
Known
pack_b_b_e_ext
:
∀ x0 .
∀ x1 x2 x3 x4 :
ι →
ι → ι
.
∀ x5 .
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x1
x6
x7
=
x2
x6
x7
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
=
x4
x6
x7
)
⟶
pack_b_b_e
x0
x1
x3
x5
=
pack_b_b_e
x0
x2
x4
x5
Definition
struct_b_b_e
struct_b_b_e
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
∈
x2
)
⟶
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x2
⟶
∀ x6 .
x6
∈
x2
⟶
x4
x5
x6
∈
x2
)
⟶
∀ x5 .
x5
∈
x2
⟶
x1
(
pack_b_b_e
x2
x3
x4
x5
)
)
⟶
x1
x0
Known
pack_struct_b_b_e_I
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
x4
∈
x0
)
⟶
∀ x3 .
x3
∈
x0
⟶
struct_b_b_e
(
pack_b_b_e
x0
x1
x2
x3
)
Known
pack_struct_b_b_e_E1
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 .
struct_b_b_e
(
pack_b_b_e
x0
x1
x2
x3
)
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x1
x4
x5
∈
x0
Known
pack_struct_b_b_e_E2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 .
struct_b_b_e
(
pack_b_b_e
x0
x1
x2
x3
)
⟶
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x2
x4
x5
∈
x0
Known
pack_struct_b_b_e_E3
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 .
struct_b_b_e
(
pack_b_b_e
x0
x1
x2
x3
)
⟶
x3
∈
x0
Known
struct_b_b_e_eta
:
∀ x0 .
struct_b_b_e
x0
⟶
x0
=
pack_b_b_e
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
decode_b
(
ap
x0
2
)
)
(
ap
x0
3
)
Definition
unpack_b_b_e_i
unpack_b_b_e_i
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι → ι
.
x1
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
decode_b
(
ap
x0
2
)
)
(
ap
x0
3
)
Known
unpack_b_b_e_i_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι → ι
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
x2
x6
x7
=
x5
x6
x7
)
⟶
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
x3
x7
x8
=
x6
x7
x8
)
⟶
x0
x1
x5
x6
x4
=
x0
x1
x2
x3
x4
)
⟶
unpack_b_b_e_i
(
pack_b_b_e
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
Definition
unpack_b_b_e_o
unpack_b_b_e_o
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι → ο
.
x1
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
decode_b
(
ap
x0
2
)
)
(
ap
x0
3
)
Known
unpack_b_b_e_o_eq
unpack_b_b_e_o_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι → ο
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 .
(
∀ x5 :
ι →
ι → ι
.
(
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
x2
x6
x7
=
x5
x6
x7
)
⟶
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
x3
x7
x8
=
x6
x7
x8
)
⟶
x0
x1
x5
x6
x4
=
x0
x1
x2
x3
x4
)
⟶
unpack_b_b_e_o
(
pack_b_b_e
x1
x2
x3
x4
)
x0
=
x0
x1
x2
x3
x4
Definition
Ring
Ring
:=
λ x0 .
and
(
struct_b_b_e
x0
)
(
unpack_b_b_e_o
x0
(
λ x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 .
explicit_Ring
x1
x4
x2
x3
)
)
Definition
pack_b_b_e_e
pack_b_b_e_e
:=
λ x0 .
λ x1 x2 :
ι →
ι → ι
.
λ x3 x4 .
lam
5
(
λ x5 .
If_i
(
x5
=
0
)
x0
(
If_i
(
x5
=
1
)
(
encode_b
x0
x1
)
(
If_i
(
x5
=
2
)
(
encode_b
x0
x2
)
(
If_i
(
x5
=
3
)
x3
x4
)
)
)
)
Known
pack_b_b_e_e_0_eq
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
x0
=
pack_b_b_e_e
x1
x2
x3
x4
x5
⟶
x1
=
ap
x0
0
Known
pack_b_b_e_e_0_eq2
pack_b_b_e_e_0_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
x0
=
ap
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
0
Known
pack_b_b_e_e_1_eq
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
x0
=
pack_b_b_e_e
x1
x2
x3
x4
x5
⟶
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
x2
x6
x7
=
decode_b
(
ap
x0
1
)
x6
x7
Known
pack_b_b_e_e_1_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x1
x5
x6
=
decode_b
(
ap
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
1
)
x5
x6
Known
pack_b_b_e_e_2_eq
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
x0
=
pack_b_b_e_e
x1
x2
x3
x4
x5
⟶
∀ x6 .
x6
∈
x1
⟶
∀ x7 .
x7
∈
x1
⟶
x3
x6
x7
=
decode_b
(
ap
x0
2
)
x6
x7
Known
pack_b_b_e_e_2_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x2
x5
x6
=
decode_b
(
ap
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
2
)
x5
x6
Known
pack_b_b_e_e_3_eq
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
x0
=
pack_b_b_e_e
x1
x2
x3
x4
x5
⟶
x4
=
ap
x0
3
Known
pack_b_b_e_e_3_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
x3
=
ap
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
3
Known
pack_b_b_e_e_4_eq
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
x0
=
pack_b_b_e_e
x1
x2
x3
x4
x5
⟶
x5
=
ap
x0
4
Known
pack_b_b_e_e_4_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
x4
=
ap
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
4
Known
pack_b_b_e_e_inj
:
∀ x0 x1 .
∀ x2 x3 x4 x5 :
ι →
ι → ι
.
∀ x6 x7 x8 x9 .
pack_b_b_e_e
x0
x2
x4
x6
x8
=
pack_b_b_e_e
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x2
x10
x11
=
x3
x10
x11
)
)
(
∀ x10 .
x10
∈
x0
⟶
∀ x11 .
x11
∈
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
x6
=
x7
)
)
(
x8
=
x9
)
Known
pack_b_b_e_e_ext
:
∀ x0 .
∀ x1 x2 x3 x4 :
ι →
ι → ι
.
∀ x5 x6 .
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x1
x7
x8
=
x2
x7
x8
)
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x3
x7
x8
=
x4
x7
x8
)
⟶
pack_b_b_e_e
x0
x1
x3
x5
x6
=
pack_b_b_e_e
x0
x2
x4
x5
x6
Definition
struct_b_b_e_e
struct_b_b_e_e
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
∈
x2
)
⟶
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
x5
∈
x2
⟶
∀ x6 .
x6
∈
x2
⟶
x4
x5
x6
∈
x2
)
⟶
∀ x5 .
x5
∈
x2
⟶
∀ x6 .
x6
∈
x2
⟶
x1
(
pack_b_b_e_e
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Known
pack_struct_b_b_e_e_I
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
x4
∈
x0
)
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
struct_b_b_e_e
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
Known
pack_struct_b_b_e_e_E1
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
struct_b_b_e_e
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x1
x5
x6
∈
x0
Known
pack_struct_b_b_e_e_E2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
struct_b_b_e_e
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x2
x5
x6
∈
x0
Known
pack_struct_b_b_e_e_E3
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
struct_b_b_e_e
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
⟶
x3
∈
x0
Known
pack_struct_b_b_e_e_E4
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
struct_b_b_e_e
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
⟶
x4
∈
x0
Known
struct_b_b_e_e_eta
:
∀ x0 .
struct_b_b_e_e
x0
⟶
x0
=
pack_b_b_e_e
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
decode_b
(
ap
x0
2
)
)
(
ap
x0
3
)
(
ap
x0
4
)
Definition
unpack_b_b_e_e_i
unpack_b_b_e_e_i
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
.
x1
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
decode_b
(
ap
x0
2
)
)
(
ap
x0
3
)
(
ap
x0
4
)
Known
unpack_b_b_e_e_i_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ι
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
x8
∈
x1
⟶
∀ x9 .
x9
∈
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
x0
x1
x6
x7
x4
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
unpack_b_b_e_e_i
(
pack_b_b_e_e
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
Definition
unpack_b_b_e_e_o
unpack_b_b_e_e_o
:=
λ x0 .
λ x1 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ο
.
x1
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
decode_b
(
ap
x0
2
)
)
(
ap
x0
3
)
(
ap
x0
4
)
Known
unpack_b_b_e_e_o_eq
unpack_b_b_e_e_o_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→
(
ι →
ι → ι
)
→
ι →
ι → ο
.
∀ x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 x5 .
(
∀ x6 :
ι →
ι → ι
.
(
∀ x7 .
x7
∈
x1
⟶
∀ x8 .
x8
∈
x1
⟶
x2
x7
x8
=
x6
x7
x8
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
x8
∈
x1
⟶
∀ x9 .
x9
∈
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
x0
x1
x6
x7
x4
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
unpack_b_b_e_e_o
(
pack_b_b_e_e
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
Definition
Ring_with_id
Ring_with_id
:=
λ x0 .
and
(
struct_b_b_e_e
x0
)
(
unpack_b_b_e_e_o
x0
(
λ x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 x5 .
explicit_Ring_with_id
x1
x4
x5
x2
x3
)
)
Definition
CRing_with_id
CRing_with_id
:=
λ x0 .
and
(
struct_b_b_e_e
x0
)
(
unpack_b_b_e_e_o
x0
(
λ x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 x5 .
explicit_CRing_with_id
x1
x4
x5
x2
x3
)
)
Definition
Ring_minus
Ring_minus
:=
λ x0 x1 .
unpack_b_b_e_i
x0
(
λ x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 .
explicit_Ring_minus
x2
x5
x3
x4
x1
)
Definition
Ring_of_Ring_with_id
Ring_of_Ring_with_id
:=
λ x0 .
unpack_b_b_e_e_i
x0
(
λ x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 x5 .
pack_b_b_e
x1
x2
x3
x4
)