Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCxm../82214..
PURjg../51438..
vout
PrCxm../cd976.. 6.10 bars
TMQo6../a092c.. ownership of 60f08.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMNef../3b869.. ownership of 5e804.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJzQ../95066.. ownership of 6b663.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJhR../0a701.. ownership of 92a5a.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMT8c../9bea8.. ownership of 7ff50.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMVqC../eff4a.. ownership of 14bc8.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZkV../0f311.. ownership of 80156.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMSBQ../b4f12.. ownership of a8425.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMU5r../cc633.. ownership of 33a6c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJ13../96906.. ownership of fe300.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMcgX../49b66.. ownership of 0cee1.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMKDL../5c746.. ownership of e7d87.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMamu../b323b.. ownership of 2afad.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMbBM../750c8.. ownership of e3af5.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMMJH../1aa8c.. ownership of d70d7.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMZj2../de0f6.. ownership of 6614c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMR6u../9857b.. ownership of e4c91.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLTE../1f952.. ownership of 4b901.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMN6q../53e7d.. ownership of 9c0ad.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMTt2../7a18b.. ownership of 92374.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMJAH../eabea.. ownership of a41e3.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMFQj../2531f.. ownership of db3e8.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMSDF../30a4d.. ownership of f81dc.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMHUs../54f6c.. ownership of eac5c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUYMJ../47b13.. doc published by Pr4zB..
Param 2b028.. : (ιιο) → ιιιιιο
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition 1e330.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (2b028.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)x0 x1 x6x0 x2 x6x0 x3 x6x0 x4 x6not (x0 x5 x6)x7)x7
Known d804d.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x02b028.. x1 x2 x3 x4 x5 x62b028.. x1 x2 x4 x3 x5 x6
Theorem f81dc.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x01e330.. x1 x2 x3 x4 x5 x6 x71e330.. x1 x2 x4 x3 x5 x6 x7 (proof)
Known f6130.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x02b028.. x1 x2 x3 x4 x5 x62b028.. x1 x2 x4 x5 x3 x6
Theorem a41e3.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x01e330.. x1 x2 x3 x4 x5 x6 x71e330.. x1 x2 x4 x5 x3 x6 x7 (proof)
Param 80df3.. : (ιιο) → ιιιιιο
Definition af3c4.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (80df3.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)x0 x1 x6x0 x2 x6x0 x3 x6x0 x4 x6not (x0 x5 x6)x7)x7
Known c4480.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x080df3.. x1 x2 x3 x4 x5 x680df3.. x1 x3 x4 x2 x5 x6
Theorem 9c0ad.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0af3c4.. x1 x2 x3 x4 x5 x6 x7af3c4.. x1 x3 x4 x2 x5 x6 x7 (proof)
Known 7ec05.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x080df3.. x1 x2 x3 x4 x5 x680df3.. x1 x4 x3 x5 x2 x6
Theorem e4c91.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0af3c4.. x1 x2 x3 x4 x5 x6 x7af3c4.. x1 x4 x3 x5 x2 x6 x7 (proof)
Known dd5bb.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x080df3.. x1 x2 x3 x4 x5 x680df3.. x1 x2 x4 x5 x3 x6
Theorem d70d7.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0af3c4.. x1 x2 x3 x4 x5 x6 x7af3c4.. x1 x2 x4 x5 x3 x6 x7 (proof)
Definition 8b6ad.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)not (x0 x1 x2)not (x0 x1 x3)not (x0 x2 x3)not (x0 x1 x4)not (x0 x2 x4)not (x0 x3 x4)x5)x5
Definition c5756.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (8b6ad.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)not (x0 x2 x5)x0 x3 x5x0 x4 x5x6)x6
Definition 4ce91.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (c5756.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)x0 x1 x6x0 x2 x6not (x0 x3 x6)not (x0 x4 x6)not (x0 x5 x6)x7)x7
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Theorem 2afad.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x04ce91.. x1 x2 x3 x4 x5 x6 x74ce91.. x1 x4 x5 x2 x3 x7 x6 (proof)
Definition c8dd3.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (1e330.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Theorem 0cee1.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0c8dd3.. x1 x2 x3 x4 x5 x6 x7 x8c8dd3.. x1 x2 x4 x3 x5 x6 x7 x8 (proof)
Theorem 33a6c.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0c8dd3.. x1 x2 x3 x4 x5 x6 x7 x8c8dd3.. x1 x2 x4 x5 x3 x6 x7 x8 (proof)
Definition 2bd79.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (af3c4.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Theorem 80156.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x02bd79.. x1 x2 x3 x4 x5 x6 x7 x82bd79.. x1 x3 x4 x2 x5 x6 x7 x8 (proof)
Theorem 7ff50.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x02bd79.. x1 x2 x3 x4 x5 x6 x7 x82bd79.. x1 x4 x3 x5 x2 x6 x7 x8 (proof)
Theorem 6b663.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x02bd79.. x1 x2 x3 x4 x5 x6 x7 x82bd79.. x1 x2 x4 x5 x3 x6 x7 x8 (proof)
Definition cb525.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (4ce91.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7x0 x4 x7not (x0 x5 x7)not (x0 x6 x7)x8)x8
Theorem 60f08.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x0cb525.. x1 x2 x3 x4 x5 x6 x7 x8cb525.. x1 x4 x5 x2 x3 x7 x6 x8 (proof)