vout |
---|
PrCit../a00af.. 4.27 barsTMS7D../6b177.. ownership of 26c4d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMRnc../5acae.. ownership of 6798c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0PUi1k../39d94.. doc published by Pr4zB..Definition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseKnown 96959.. : ∀ x0 x1 : ι → ο . ∀ x2 x3 x4 x5 x6 x7 . (∀ x8 : ι → ο . x8 x2 ⟶ x8 x3 ⟶ x8 x4 ⟶ x8 x5 ⟶ x8 x6 ⟶ x8 x7 ⟶ ∀ x9 . x0 x9 ⟶ x8 x9) ⟶ (∀ x8 . x0 x8 ⟶ not (x1 x8) ⟶ ∀ x9 : ι → ο . x9 x6 ⟶ x9 x7 ⟶ x9 x8) ⟶ x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ ∀ x8 : ι → ι → ι → ι → ο . (∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x7 x10 x6)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x2 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x3 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x4 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x5 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x6 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x3 x9 x3 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x4 x9 x3 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x5 x9 x3 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x6 x9 x3 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x3 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x4 x9 x4 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x5 x9 x4 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x6 x9 x4 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x4 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x5 x9 x5 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x6 x9 x5 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x5 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x6 x9 x6 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x6 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x7 x9)) ⟶ ∀ x9 : ι → ι → ι → ι → ο . (∀ x10 x11 . x0 x10 ⟶ x0 x11 ⟶ x9 x10 x11 x7 x7) ⟶ (∀ x10 . x0 x10 ⟶ x9 x6 x6 x7 x10) ⟶ (∀ x10 . x0 x10 ⟶ x9 x6 x7 x7 x10) ⟶ x9 x2 x6 x4 x6 ⟶ x9 x2 x6 x4 x7 ⟶ x9 x2 x6 x5 x6 ⟶ x9 x2 x6 x5 x7 ⟶ x9 x2 x6 x7 x6 ⟶ x9 x2 x7 x4 x7 ⟶ x9 x2 x7 x5 x7 ⟶ x9 x3 x6 x3 x7 ⟶ x9 x3 x6 x5 x6 ⟶ x9 x3 x6 x5 x7 ⟶ x9 x3 x6 x6 x7 ⟶ x9 x3 x6 x7 x6 ⟶ x9 x3 x7 x5 x7 ⟶ x9 x4 x6 x2 x7 ⟶ x9 x4 x6 x4 x7 ⟶ x9 x5 x6 x2 x7 ⟶ x9 x5 x6 x3 x7 ⟶ x9 x6 x6 x3 x7 ⟶ x9 x7 x6 x2 x7 ⟶ x9 x7 x6 x3 x7 ⟶ x9 x7 x6 x6 x7 ⟶ ∀ x10 . x0 x10 ⟶ ∀ x11 . x0 x11 ⟶ ∀ x12 . x0 x12 ⟶ ∀ x13 . x0 x13 ⟶ not (x1 x10) ⟶ not (x1 x11) ⟶ x12 = x6 ⟶ not (x1 x13) ⟶ ∀ x14 . x0 x14 ⟶ ∀ x15 . x0 x15 ⟶ ∀ x16 . x0 x16 ⟶ ∀ x17 . x0 x17 ⟶ x8 x14 x10 x15 x11 ⟶ x8 x15 x11 x16 x12 ⟶ x8 x16 x12 x17 x13 ⟶ not (x9 x14 x10 x15 x11) ⟶ not (x9 x14 x10 x16 x12) ⟶ not (x9 x14 x10 x17 x13) ⟶ not (x9 x15 x11 x16 x12) ⟶ not (x9 x15 x11 x17 x13) ⟶ not (x9 x16 x12 x17 x13) ⟶ ∀ x18 : ο . (x14 = x2 ⟶ x10 = x6 ⟶ x15 = x3 ⟶ x11 = x6 ⟶ x16 = x6 ⟶ x12 = x6 ⟶ x17 = x2 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x4 ⟶ x10 = x6 ⟶ x15 = x5 ⟶ x11 = x6 ⟶ x16 = x6 ⟶ x12 = x6 ⟶ x17 = x5 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x4 ⟶ x10 = x6 ⟶ x15 = x5 ⟶ x11 = x6 ⟶ x16 = x6 ⟶ x12 = x6 ⟶ x17 = x6 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x4 ⟶ x10 = x6 ⟶ x15 = x5 ⟶ x11 = x6 ⟶ x16 = x7 ⟶ x12 = x6 ⟶ x17 = x5 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x2 ⟶ x10 = x6 ⟶ x15 = x6 ⟶ x11 = x6 ⟶ x16 = x2 ⟶ x12 = x7 ⟶ x17 = x6 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x4 ⟶ x10 = x6 ⟶ x15 = x5 ⟶ x11 = x6 ⟶ x16 = x5 ⟶ x12 = x7 ⟶ x17 = x6 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x4 ⟶ x10 = x6 ⟶ x15 = x6 ⟶ x11 = x6 ⟶ x16 = x5 ⟶ x12 = x7 ⟶ x17 = x6 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x5 ⟶ x10 = x6 ⟶ x15 = x6 ⟶ x11 = x6 ⟶ x16 = x4 ⟶ x12 = x7 ⟶ x17 = x5 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x5 ⟶ x10 = x6 ⟶ x15 = x6 ⟶ x11 = x6 ⟶ x16 = x4 ⟶ x12 = x7 ⟶ x17 = x6 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x5 ⟶ x10 = x6 ⟶ x15 = x6 ⟶ x11 = x6 ⟶ x16 = x5 ⟶ x12 = x7 ⟶ x17 = x6 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x5 ⟶ x10 = x6 ⟶ x15 = x7 ⟶ x11 = x6 ⟶ x16 = x4 ⟶ x12 = x7 ⟶ x17 = x5 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x2 ⟶ x10 = x6 ⟶ x15 = x2 ⟶ x11 = x7 ⟶ x16 = x3 ⟶ x12 = x7 ⟶ x17 = x6 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x5 ⟶ x10 = x6 ⟶ x15 = x4 ⟶ x11 = x7 ⟶ x16 = x5 ⟶ x12 = x7 ⟶ x17 = x6 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x6 ⟶ x10 = x6 ⟶ x15 = x4 ⟶ x11 = x7 ⟶ x16 = x5 ⟶ x12 = x7 ⟶ x17 = x6 ⟶ x13 = x7 ⟶ x18) ⟶ x18Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x2) ⟶ (x1 ⟶ x2) ⟶ x2Known xmxm : ∀ x0 : ο . or x0 (not x0)Known FalseEFalseE : False ⟶ ∀ x0 : ο . x0Theorem 26c4d.. : ∀ x0 x1 : ι → ο . ∀ x2 x3 x4 x5 x6 x7 . (∀ x8 : ι → ο . x8 x2 ⟶ x8 x3 ⟶ x8 x4 ⟶ x8 x5 ⟶ x8 x6 ⟶ x8 x7 ⟶ ∀ x9 . x0 x9 ⟶ x8 x9) ⟶ (∀ x8 . x0 x8 ⟶ not (x1 x8) ⟶ ∀ x9 : ι → ο . x9 x6 ⟶ x9 x7 ⟶ x9 x8) ⟶ x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ ∀ x8 : ι → ι → ι → ι → ο . (∀ x9 . x0 x9 ⟶ ∀ x10 . x0 x10 ⟶ not (x8 x9 x7 x10 x6)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x2 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x3 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x4 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x5 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x6 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x2 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x3 x9 x3 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x4 x9 x3 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x5 x9 x3 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x6 x9 x3 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x3 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x4 x9 x4 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x5 x9 x4 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x6 x9 x4 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x4 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x5 x9 x5 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x6 x9 x5 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x5 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x6 x9 x6 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x6 x9)) ⟶ (∀ x9 . x0 x9 ⟶ not (x8 x7 x9 x7 x9)) ⟶ ∀ x9 : ι → ι → ι → ι → ο . (∀ x10 x11 . x0 x10 ⟶ x0 x11 ⟶ x9 x10 x11 x7 x7) ⟶ (∀ x10 . x0 x10 ⟶ x9 x6 x6 x7 x10) ⟶ (∀ x10 . x0 x10 ⟶ x9 x6 x7 x7 x10) ⟶ x9 x2 x6 x4 x6 ⟶ x9 x2 x6 x4 x7 ⟶ x9 x2 x6 x5 x6 ⟶ x9 x2 x6 x5 x7 ⟶ x9 x2 x6 x7 x6 ⟶ x9 x2 x7 x4 x7 ⟶ x9 x2 x7 x5 x7 ⟶ x9 x3 x6 x3 x7 ⟶ x9 x3 x6 x5 x6 ⟶ x9 x3 x6 x5 x7 ⟶ x9 x3 x6 x6 x7 ⟶ x9 x3 x6 x7 x6 ⟶ x9 x3 x7 x5 x7 ⟶ x9 x4 x6 x2 x7 ⟶ x9 x4 x6 x4 x7 ⟶ x9 x5 x6 x2 x7 ⟶ x9 x5 x6 x3 x7 ⟶ x9 x6 x6 x3 x7 ⟶ x9 x7 x6 x2 x7 ⟶ x9 x7 x6 x3 x7 ⟶ x9 x7 x6 x6 x7 ⟶ ∀ x10 . x0 x10 ⟶ ∀ x11 . x0 x11 ⟶ ∀ x12 . x0 x12 ⟶ ∀ x13 . x0 x13 ⟶ not (x1 x10) ⟶ not (x1 x11) ⟶ not (x1 x12) ⟶ not (x1 x13) ⟶ ∀ x14 . x0 x14 ⟶ ∀ x15 . x0 x15 ⟶ ∀ x16 . x0 x16 ⟶ ∀ x17 . x0 x17 ⟶ x8 x14 x10 x15 x11 ⟶ x8 x15 x11 x16 x12 ⟶ x8 x16 x12 x17 x13 ⟶ not (x9 x14 x10 x15 x11) ⟶ not (x9 x14 x10 x16 x12) ⟶ not (x9 x14 x10 x17 x13) ⟶ not (x9 x15 x11 x16 x12) ⟶ not (x9 x15 x11 x17 x13) ⟶ not (x9 x16 x12 x17 x13) ⟶ ∀ x18 : ο . (x14 = x2 ⟶ x10 = x6 ⟶ x15 = x3 ⟶ x11 = x6 ⟶ x16 = x6 ⟶ x12 = x6 ⟶ x17 = x2 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x4 ⟶ x10 = x6 ⟶ x15 = x5 ⟶ x11 = x6 ⟶ x16 = x6 ⟶ x12 = x6 ⟶ x17 = x5 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x4 ⟶ x10 = x6 ⟶ x15 = x5 ⟶ x11 = x6 ⟶ x16 = x6 ⟶ x12 = x6 ⟶ x17 = x6 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x4 ⟶ x10 = x6 ⟶ x15 = x5 ⟶ x11 = x6 ⟶ x16 = x7 ⟶ x12 = x6 ⟶ x17 = x5 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x2 ⟶ x10 = x6 ⟶ x15 = x6 ⟶ x11 = x6 ⟶ x16 = x2 ⟶ x12 = x7 ⟶ x17 = x6 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x4 ⟶ x10 = x6 ⟶ x15 = x5 ⟶ x11 = x6 ⟶ x16 = x5 ⟶ x12 = x7 ⟶ x17 = x6 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x4 ⟶ x10 = x6 ⟶ x15 = x6 ⟶ x11 = x6 ⟶ x16 = x5 ⟶ x12 = x7 ⟶ x17 = x6 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x5 ⟶ x10 = x6 ⟶ x15 = x6 ⟶ x11 = x6 ⟶ x16 = x4 ⟶ x12 = x7 ⟶ x17 = x5 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x5 ⟶ x10 = x6 ⟶ x15 = x6 ⟶ x11 = x6 ⟶ x16 = x4 ⟶ x12 = x7 ⟶ x17 = x6 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x5 ⟶ x10 = x6 ⟶ x15 = x6 ⟶ x11 = x6 ⟶ x16 = x5 ⟶ x12 = x7 ⟶ x17 = x6 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x5 ⟶ x10 = x6 ⟶ x15 = x7 ⟶ x11 = x6 ⟶ x16 = x4 ⟶ x12 = x7 ⟶ x17 = x5 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x2 ⟶ x10 = x6 ⟶ x15 = x2 ⟶ x11 = x7 ⟶ x16 = x3 ⟶ x12 = x7 ⟶ x17 = x6 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x5 ⟶ x10 = x6 ⟶ x15 = x4 ⟶ x11 = x7 ⟶ x16 = x5 ⟶ x12 = x7 ⟶ x17 = x6 ⟶ x13 = x7 ⟶ x18) ⟶ (x14 = x6 ⟶ x10 = x6 ⟶ x15 = x4 ⟶ x11 = x7 ⟶ x16 = x5 ⟶ x12 = x7 ⟶ x17 = x6 ⟶ x13 = x7 ⟶ x18) ⟶ x18 (proof) |
|