vout |
---|
PrAa9../51ccb.. 0.11 barsTMY5C../fcea3.. ownership of 88d93.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMFnp../720d6.. ownership of 75c44.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMP8i../744cb.. ownership of a7a6a.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMYih../429db.. ownership of ce7dd.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMYht../a1a66.. ownership of 00c54.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMbDc../14096.. ownership of 16b2c.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMdvn../08f4b.. ownership of bbb38.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMVq1../c8d09.. ownership of 179a1.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMPAB../89f65.. ownership of 754ba.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMLDa../90534.. ownership of 00c10.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMPDz../8918e.. ownership of 5a15a.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMc8P../fbcd7.. ownership of 8b3f7.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMJ7n../28d84.. ownership of b3b19.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0TMGdj../11b9a.. ownership of 9a322.. as prop with payaddr Pr5Zc.. rights free controlledby Pr5Zc.. upto 0PUXVC../e5210.. doc published by Pr5Zc..Known 3e03a.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 (x1 x2 x3) x4 = x1 x2 (x1 x3 x4)) ⟶ ∀ x2 x3 x4 x5 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x1 (x1 x2 x3) (x1 x4 x5) = x1 x2 (x1 x3 (x1 x4 x5))Theorem b3b19.. : ∀ x0 : ι → ο . ∀ x1 x2 : ι → ι → ι . (∀ x3 x4 . x0 x3 ⟶ x0 x4 ⟶ x0 (x1 x3 x4)) ⟶ (∀ x3 x4 . x0 x3 ⟶ x0 x4 ⟶ x0 (x2 x3 x4)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x1 x3 (x1 x4 x5) = x1 x4 (x1 x3 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x1 (x1 x3 x4) x5 = x1 x3 (x1 x4 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x2 x3 (x1 x4 x5) = x1 (x2 x3 x4) (x2 x3 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x2 (x1 x3 x4) x5 = x1 (x2 x3 x5) (x2 x4 x5)) ⟶ ∀ x3 x4 x5 x6 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x2 (x1 x3 x4) (x1 x5 x6) = x1 (x2 x3 x5) (x1 (x2 x3 x6) (x1 (x2 x4 x5) (x2 x4 x6))) (proof)Known 547c4.. : ∀ x0 : ι → ο . ∀ x1 x2 : ι → ι → ι . (∀ x3 x4 . x0 x3 ⟶ x0 x4 ⟶ x0 (x1 x3 x4)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x2 (x1 x3 x4) x5 = x1 (x2 x3 x5) (x2 x4 x5)) ⟶ ∀ x3 x4 x5 x6 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x2 (x1 x3 (x1 x4 x5)) x6 = x1 (x2 x3 x6) (x1 (x2 x4 x6) (x2 x5 x6))Known aaa2e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 (x1 x2 x3) x4 = x1 x2 (x1 x3 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x1 (x1 x2 (x1 x3 x4)) (x1 x5 (x1 x6 x7)) = x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x7))))Known f7707.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 x6))) = x1 x4 (x1 x2 (x1 x5 (x1 x3 x6)))Theorem 5a15a.. : ∀ x0 : ι → ο . ∀ x1 x2 : ι → ι → ι . (∀ x3 x4 . x0 x3 ⟶ x0 x4 ⟶ x0 (x1 x3 x4)) ⟶ (∀ x3 x4 . x0 x3 ⟶ x0 x4 ⟶ x0 (x2 x3 x4)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x1 x3 (x1 x4 x5) = x1 x4 (x1 x3 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x1 (x1 x3 x4) x5 = x1 x3 (x1 x4 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x2 x3 (x1 x4 x5) = x1 (x2 x3 x4) (x2 x3 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x2 (x1 x3 x4) x5 = x1 (x2 x3 x5) (x2 x4 x5)) ⟶ ∀ x3 x4 x5 x6 x7 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x2 (x1 x3 (x1 x4 x5)) (x1 x6 x7) = x1 (x2 x3 x6) (x1 (x2 x3 x7) (x1 (x2 x4 x6) (x1 (x2 x4 x7) (x1 (x2 x5 x6) (x2 x5 x7))))) (proof)Known 81c99.. : ∀ x0 : ι → ο . ∀ x1 x2 : ι → ι → ι . (∀ x3 x4 . x0 x3 ⟶ x0 x4 ⟶ x0 (x1 x3 x4)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x2 (x1 x3 x4) x5 = x1 (x2 x3 x5) (x2 x4 x5)) ⟶ ∀ x3 x4 x5 x6 x7 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x2 (x1 x3 (x1 x4 (x1 x5 x6))) x7 = x1 (x2 x3 x7) (x1 (x2 x4 x7) (x1 (x2 x5 x7) (x2 x6 x7)))Known a227c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 (x1 x2 x3) x4 = x1 x2 (x1 x3 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 (x1 x2 (x1 x3 (x1 x4 x5))) (x1 x6 (x1 x7 (x1 x8 x9))) = x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9))))))Known 456fe.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x5 (x1 x2 (x1 x6 (x1 x3 (x1 x7 (x1 x4 x8)))))Theorem 754ba.. : ∀ x0 : ι → ο . ∀ x1 x2 : ι → ι → ι . (∀ x3 x4 . x0 x3 ⟶ x0 x4 ⟶ x0 (x1 x3 x4)) ⟶ (∀ x3 x4 . x0 x3 ⟶ x0 x4 ⟶ x0 (x2 x3 x4)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x1 x3 (x1 x4 x5) = x1 x4 (x1 x3 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x1 (x1 x3 x4) x5 = x1 x3 (x1 x4 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x2 x3 (x1 x4 x5) = x1 (x2 x3 x4) (x2 x3 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x2 (x1 x3 x4) x5 = x1 (x2 x3 x5) (x2 x4 x5)) ⟶ ∀ x3 x4 x5 x6 x7 x8 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x2 (x1 x3 (x1 x4 (x1 x5 x6))) (x1 x7 x8) = x1 (x2 x3 x7) (x1 (x2 x3 x8) (x1 (x2 x4 x7) (x1 (x2 x4 x8) (x1 (x2 x5 x7) (x1 (x2 x5 x8) (x1 (x2 x6 x7) (x2 x6 x8))))))) (proof)Known 880a1.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 x10))))))))Known 2a50e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ ∀ x2 x3 x4 x5 x6 x7 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x7)))))Known e11b7.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ ∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 (x1 x2 (x1 x3 x4))Theorem bbb38.. : ∀ x0 : ι → ο . ∀ x1 x2 : ι → ι → ι . (∀ x3 x4 . x0 x3 ⟶ x0 x4 ⟶ x0 (x1 x3 x4)) ⟶ (∀ x3 x4 . x0 x3 ⟶ x0 x4 ⟶ x0 (x2 x3 x4)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x1 x3 (x1 x4 x5) = x1 x4 (x1 x3 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x1 (x1 x3 x4) x5 = x1 x3 (x1 x4 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x2 x3 (x1 x4 x5) = x1 (x2 x3 x4) (x2 x3 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x2 (x1 x3 x4) x5 = x1 (x2 x3 x5) (x2 x4 x5)) ⟶ ∀ x3 x4 x5 x6 x7 x8 x9 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x2 (x1 x3 (x1 x4 (x1 x5 x6))) (x1 x7 (x1 x8 x9)) = x1 (x2 x3 x7) (x1 (x2 x3 x8) (x1 (x2 x3 x9) (x1 (x2 x4 x7) (x1 (x2 x4 x8) (x1 (x2 x4 x9) (x1 (x2 x5 x7) (x1 (x2 x5 x8) (x1 (x2 x5 x9) (x1 (x2 x6 x7) (x1 (x2 x6 x8) (x2 x6 x9))))))))))) (proof)Known 2c5ad.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 x13)))))))))))Known 18faf.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))))Known 25618.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ ∀ x2 x3 x4 x5 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 (x1 x2 (x1 x3 (x1 x4 x5)))Theorem 00c54.. : ∀ x0 : ι → ο . ∀ x1 x2 : ι → ι → ι . (∀ x3 x4 . x0 x3 ⟶ x0 x4 ⟶ x0 (x1 x3 x4)) ⟶ (∀ x3 x4 . x0 x3 ⟶ x0 x4 ⟶ x0 (x2 x3 x4)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x1 x3 (x1 x4 x5) = x1 x4 (x1 x3 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x1 (x1 x3 x4) x5 = x1 x3 (x1 x4 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x2 x3 (x1 x4 x5) = x1 (x2 x3 x4) (x2 x3 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x2 (x1 x3 x4) x5 = x1 (x2 x3 x5) (x2 x4 x5)) ⟶ ∀ x3 x4 x5 x6 x7 x8 x9 x10 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x2 (x1 x3 (x1 x4 (x1 x5 x6))) (x1 x7 (x1 x8 (x1 x9 x10))) = x1 (x2 x3 x7) (x1 (x2 x3 x8) (x1 (x2 x3 x9) (x1 (x2 x3 x10) (x1 (x2 x4 x7) (x1 (x2 x4 x8) (x1 (x2 x4 x9) (x1 (x2 x4 x10) (x1 (x2 x5 x7) (x1 (x2 x5 x8) (x1 (x2 x5 x9) (x1 (x2 x5 x10) (x1 (x2 x6 x7) (x1 (x2 x6 x8) (x1 (x2 x6 x9) (x2 x6 x10))))))))))))))) (proof)Theorem a7a6a.. : ∀ x0 : ι → ο . ∀ x1 x2 : ι → ι → ι . (∀ x3 x4 . x0 x3 ⟶ x0 x4 ⟶ x0 (x1 x3 x4)) ⟶ (∀ x3 x4 . x0 x3 ⟶ x0 x4 ⟶ x0 (x2 x3 x4)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x1 x3 (x1 x4 x5) = x1 x4 (x1 x3 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x1 (x1 x3 x4) x5 = x1 x3 (x1 x4 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x2 x3 (x1 x4 x5) = x1 (x2 x3 x4) (x2 x3 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x2 (x1 x3 x4) x5 = x1 (x2 x3 x5) (x2 x4 x5)) ⟶ ∀ x3 : ι → ι . (∀ x4 . x0 x4 ⟶ x3 x4 = x2 x4 x4) ⟶ ∀ x4 x5 x6 x7 . x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x3 (x1 x4 (x1 x5 (x1 x6 x7))) = x1 (x3 x4) (x1 (x2 x4 x5) (x1 (x2 x4 x6) (x1 (x2 x4 x7) (x1 (x2 x5 x4) (x1 (x3 x5) (x1 (x2 x5 x6) (x1 (x2 x5 x7) (x1 (x2 x6 x4) (x1 (x2 x6 x5) (x1 (x3 x6) (x1 (x2 x6 x7) (x1 (x2 x7 x4) (x1 (x2 x7 x5) (x1 (x2 x7 x6) (x3 x7))))))))))))))) (proof)Known 0d20b.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 x6))) = x1 x4 (x1 x5 (x1 x2 (x1 x3 x6)))Known 8be1c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x4 (x1 x2 (x1 x8 (x1 x6 (x1 x3 (x1 x5 (x1 x7 x9))))))Known 474fb.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 (x1 x2 x3) x4 = x1 x2 (x1 x3 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x0 x15 ⟶ x0 x16 ⟶ x0 x17 ⟶ x1 (x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9))))))) (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17))))))) = x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x14 (x1 x15 (x1 x16 x17))))))))))))))Known 1d9b9.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x8 (x1 x4 (x1 x2 (x1 x7 (x1 x6 (x1 x3 x9))))))Known d3eb2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 x10))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x2 x10)))))))Known 4c672.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 x12))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x2 x12)))))))))Known 7230f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x6 (x1 x7 (x1 x4 (x1 x2 (x1 x3 (x1 x5 x8)))))Known c0ce9.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x8 (x1 x2 (x1 x5 (x1 x7 (x1 x6 (x1 x3 (x1 x4 x9))))))Known ac781.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 x6))) = x1 x5 (x1 x3 (x1 x4 (x1 x2 x6)))Known d817d.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x7)))) = x1 x4 (x1 x2 (x1 x5 (x1 x6 (x1 x3 x7))))Known 495ba.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x0 x13 ⟶ x0 x14 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 x14))))))))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x9 (x1 x10 (x1 x11 (x1 x12 (x1 x13 (x1 x2 x14)))))))))))Known baf24.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 x7)))) = x1 x4 (x1 x5 (x1 x2 (x1 x6 (x1 x3 x7))))Known c0c54.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 x8))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x2 x8)))))Known 50b3f.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x8 (x1 x3 (x1 x5 (x1 x6 (x1 x2 (x1 x4 (x1 x7 x9))))))Known 93eac.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 x6))) = x1 x3 (x1 x4 (x1 x5 (x1 x2 x6)))Known df420.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x5 (x1 x8 (x1 x2 (x1 x3 (x1 x4 (x1 x6 (x1 x7 x9))))))Known cbdc2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 (x1 x2 x9))))))Known a09f2.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι . (∀ x2 x3 . x0 x2 ⟶ x0 x3 ⟶ x0 (x1 x2 x3)) ⟶ (∀ x2 x3 x4 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x1 x2 (x1 x3 x4) = x1 x3 (x1 x2 x4)) ⟶ ∀ x2 x3 x4 x5 x6 x7 x8 x9 . x0 x2 ⟶ x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x1 x2 (x1 x3 (x1 x4 (x1 x5 (x1 x6 (x1 x7 (x1 x8 x9)))))) = x1 x6 (x1 x2 (x1 x7 (x1 x3 (x1 x4 (x1 x8 (x1 x5 x9))))))Theorem 88d93.. : ∀ x0 : ι → ο . ∀ x1 x2 : ι → ι → ι . (∀ x3 x4 . x0 x3 ⟶ x0 x4 ⟶ x0 (x1 x3 x4)) ⟶ (∀ x3 x4 . x0 x3 ⟶ x0 x4 ⟶ x0 (x2 x3 x4)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x1 x3 (x1 x4 x5) = x1 x4 (x1 x3 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x1 (x1 x3 x4) x5 = x1 x3 (x1 x4 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x2 x3 (x1 x4 x5) = x1 (x2 x3 x4) (x2 x3 x5)) ⟶ (∀ x3 x4 x5 . x0 x3 ⟶ x0 x4 ⟶ x0 x5 ⟶ x2 (x1 x3 x4) x5 = x1 (x2 x3 x5) (x2 x4 x5)) ⟶ ∀ x3 : ι → ι . (∀ x4 . x0 x4 ⟶ x3 x4 = x2 x4 x4) ⟶ ∀ x4 : ι → ι . (∀ x5 . x0 x5 ⟶ x0 (x4 x5)) ⟶ (∀ x5 . x0 x5 ⟶ x4 (x4 x5) = x5) ⟶ (∀ x5 x6 . x0 x5 ⟶ x0 x6 ⟶ x1 (x4 x5) (x1 x5 x6) = x6) ⟶ (∀ x5 x6 . x0 x5 ⟶ x0 x6 ⟶ x1 x5 (x1 (x4 x5) x6) = x6) ⟶ (∀ x5 x6 . x0 x5 ⟶ x0 x6 ⟶ x2 (x4 x5) x6 = x4 (x2 x5 x6)) ⟶ (∀ x5 x6 . x0 x5 ⟶ x0 x6 ⟶ x2 x5 (x4 x6) = x4 (x2 x5 x6)) ⟶ (∀ x5 x6 . x0 x5 ⟶ x0 x6 ⟶ x2 x5 x6 = x2 x6 x5) ⟶ (∀ x5 x6 x7 x8 . x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x2 (x2 x5 x6) (x2 x7 x8) = x2 (x2 x5 x7) (x2 x6 x8)) ⟶ ∀ x5 x6 x7 x8 x9 x10 x11 x12 . x0 x5 ⟶ x0 x6 ⟶ x0 x7 ⟶ x0 x8 ⟶ x0 x9 ⟶ x0 x10 ⟶ x0 x11 ⟶ x0 x12 ⟶ x2 (x1 (x3 x5) (x1 (x3 x6) (x1 (x3 x7) (x3 x8)))) (x1 (x3 x9) (x1 (x3 x10) (x1 (x3 x11) (x3 x12)))) = x1 (x3 (x1 (x2 x5 x10) (x1 (x2 x6 x9) (x1 (x2 x7 x12) (x4 (x2 x8 x11)))))) (x1 (x3 (x1 (x2 x5 x11) (x1 (x4 (x2 x6 x12)) (x1 (x2 x7 x9) (x2 x8 x10))))) (x1 (x3 (x1 (x2 x5 x12) (x1 (x2 x6 x11) (x1 (x4 (x2 x7 x10)) (x2 x8 x9))))) (x3 (x1 (x2 x5 x9) (x1 (x4 (x2 x6 x10)) (x1 (x4 (x2 x7 x11)) (x4 (x2 x8 x12)))))))) (proof) |
|