Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrJAV../04eae..
PUKDh../714d5..
vout
PrJAV../978bd.. 6.39 bars
TMXPq../5ad5d.. ownership of 2a483.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMSEG../a6086.. ownership of 4e7eb.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMYL9../50bee.. ownership of 5f038.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMEse../19122.. ownership of 6a23e.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMYnA../68689.. ownership of 8ebd3.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMMTo../c558b.. ownership of 400ad.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMKQn../0cf1c.. ownership of 8bfac.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMFQh../80d56.. ownership of 01a9b.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMYrz../b5b28.. ownership of ce0a6.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMaTs../c2b1f.. ownership of 4bc7a.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMXXq../12d77.. ownership of 42037.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMF4o../86b77.. ownership of d71f0.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
PUZYY../637d1.. doc published by Pr6Pc..
Param SNoSNo : ιο
Param add_SNoadd_SNo : ιιι
Known SNo_add_SNo_3SNo_add_SNo_3 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNo (add_SNo x0 (add_SNo x1 x2))
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Theorem SNo_add_SNo_4SNo_add_SNo_4 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNo (add_SNo x0 (add_SNo x1 (add_SNo x2 x3))) (proof)
Known add_SNo_rotate_3_1add_SNo_rotate_3_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo x2 (add_SNo x0 x1)
Known add_SNo_com_3_0_1add_SNo_com_3_0_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo x1 (add_SNo x0 x2)
Theorem add_SNo_rotate_4_1add_SNo_rotate_4_1 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo x0 (add_SNo x1 (add_SNo x2 x3)) = add_SNo x3 (add_SNo x0 (add_SNo x1 x2)) (proof)
Param SNoLeSNoLe : ιιο
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Param SNoLtSNoLt : ιιο
Known SNoLeESNoLeE : ∀ x0 x1 . SNo x0SNo x1SNoLe x0 x1or (SNoLt x0 x1) (x0 = x1)
Known SNoLtLeSNoLtLe : ∀ x0 x1 . SNoLt x0 x1SNoLe x0 x1
Known add_SNo_Lt1_canceladd_SNo_Lt1_cancel : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x0 x1) (add_SNo x2 x1)SNoLt x0 x2
Known add_SNo_cancel_Radd_SNo_cancel_R : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 x1 = add_SNo x2 x1x0 = x2
Known SNoLe_refSNoLe_ref : ∀ x0 . SNoLe x0 x0
Theorem add_SNo_Le1_canceladd_SNo_Le1_cancel : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe (add_SNo x0 x1) (add_SNo x2 x1)SNoLe x0 x2 (proof)
Known add_SNo_Lt2_canceladd_SNo_Lt2_cancel : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x0 x1) (add_SNo x0 x2)SNoLt x1 x2
Known add_SNo_cancel_Ladd_SNo_cancel_L : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 x1 = add_SNo x0 x2x1 = x2
Theorem 8ebd3.. : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe (add_SNo x0 x1) (add_SNo x0 x2)SNoLe x1 x2 (proof)
Param mul_SNomul_SNo : ιιι
Param SNoS_SNoS_ : ιι
Param SNoLevSNoLev : ιι
Known SNoLev_ind3SNoLev_ind3 : ∀ x0 : ι → ι → ι → ο . (∀ x1 x2 x3 . SNo x1SNo x2SNo x3(∀ x4 . x4SNoS_ (SNoLev x1)x0 x4 x2 x3)(∀ x4 . x4SNoS_ (SNoLev x2)x0 x1 x4 x3)(∀ x4 . x4SNoS_ (SNoLev x3)x0 x1 x2 x4)(∀ x4 . x4SNoS_ (SNoLev x1)∀ x5 . x5SNoS_ (SNoLev x2)x0 x4 x5 x3)(∀ x4 . x4SNoS_ (SNoLev x1)∀ x5 . x5SNoS_ (SNoLev x3)x0 x4 x2 x5)(∀ x4 . x4SNoS_ (SNoLev x2)∀ x5 . x5SNoS_ (SNoLev x3)x0 x1 x4 x5)(∀ x4 . x4SNoS_ (SNoLev x1)∀ x5 . x5SNoS_ (SNoLev x2)∀ x6 . x6SNoS_ (SNoLev x3)x0 x4 x5 x6)x0 x1 x2 x3)∀ x1 x2 x3 . SNo x1SNo x2SNo x3x0 x1 x2 x3
Param SNoCutPSNoCutP : ιιο
Param SNoLSNoL : ιι
Param minus_SNominus_SNo : ιι
Param SNoRSNoR : ιι
Param SNoCutSNoCut : ιιι
Known mul_SNo_eq_3mul_SNo_eq_3 : ∀ x0 x1 . SNo x0SNo x1∀ x2 : ο . (∀ x3 x4 . SNoCutP x3 x4(∀ x5 . x5x3∀ x6 : ο . (∀ x7 . x7SNoL x0∀ x8 . x8SNoL x1x5 = add_SNo (mul_SNo x7 x1) (add_SNo (mul_SNo x0 x8) (minus_SNo (mul_SNo x7 x8)))x6)(∀ x7 . x7SNoR x0∀ x8 . x8SNoR x1x5 = add_SNo (mul_SNo x7 x1) (add_SNo (mul_SNo x0 x8) (minus_SNo (mul_SNo x7 x8)))x6)x6)(∀ x5 . x5SNoL x0∀ x6 . x6SNoL x1add_SNo (mul_SNo x5 x1) (add_SNo (mul_SNo x0 x6) (minus_SNo (mul_SNo x5 x6)))x3)(∀ x5 . x5SNoR x0∀ x6 . x6SNoR x1add_SNo (mul_SNo x5 x1) (add_SNo (mul_SNo x0 x6) (minus_SNo (mul_SNo x5 x6)))x3)(∀ x5 . x5x4∀ x6 : ο . (∀ x7 . x7SNoL x0∀ x8 . x8SNoR x1x5 = add_SNo (mul_SNo x7 x1) (add_SNo (mul_SNo x0 x8) (minus_SNo (mul_SNo x7 x8)))x6)(∀ x7 . x7SNoR x0∀ x8 . x8SNoL x1x5 = add_SNo (mul_SNo x7 x1) (add_SNo (mul_SNo x0 x8) (minus_SNo (mul_SNo x7 x8)))x6)x6)(∀ x5 . x5SNoL x0∀ x6 . x6SNoR x1add_SNo (mul_SNo x5 x1) (add_SNo (mul_SNo x0 x6) (minus_SNo (mul_SNo x5 x6)))x4)(∀ x5 . x5SNoR x0∀ x6 . x6SNoL x1add_SNo (mul_SNo x5 x1) (add_SNo (mul_SNo x0 x6) (minus_SNo (mul_SNo x5 x6)))x4)mul_SNo x0 x1 = SNoCut x3 x4x2)x2
Param binunionbinunion : ιιι
Known SNoCut_extSNoCut_ext : ∀ x0 x1 x2 x3 . SNoCutP x0 x1SNoCutP x2 x3(∀ x4 . x4x0SNoLt x4 (SNoCut x2 x3))(∀ x4 . x4x1SNoLt (SNoCut x2 x3) x4)(∀ x4 . x4x2SNoLt x4 (SNoCut x0 x1))(∀ x4 . x4x3SNoLt (SNoCut x0 x1) x4)SNoCut x0 x1 = SNoCut x2 x3
Known add_SNo_SNoCutPadd_SNo_SNoCutP : ∀ x0 x1 . SNo x0SNo x1SNoCutP (binunion {add_SNo x2 x1|x2 ∈ SNoL x0} (prim5 (SNoL x1) (add_SNo x0))) (binunion {add_SNo x2 x1|x2 ∈ SNoR x0} (prim5 (SNoR x1) (add_SNo x0)))
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Known SNoL_ESNoL_E : ∀ x0 . SNo x0∀ x1 . x1SNoL x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x2)x2
Known add_SNo_minus_Lt1b3add_SNo_minus_Lt1b3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt (add_SNo x0 x1) (add_SNo x3 x2)SNoLt (add_SNo x0 (add_SNo x1 (minus_SNo x2))) x3
Known SNoL_SNoSSNoL_SNoS : ∀ x0 . SNo x0∀ x1 . x1SNoL x0x1SNoS_ (SNoLev x0)
Known add_SNo_assocadd_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo (add_SNo x0 x1) x2
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known add_SNo_SNoL_interpolateadd_SNo_SNoL_interpolate : ∀ x0 x1 . SNo x0SNo x1∀ x2 . x2SNoL (add_SNo x0 x1)or (∀ x3 : ο . (∀ x4 . and (x4SNoL x0) (SNoLe x2 (add_SNo x4 x1))x3)x3) (∀ x3 : ο . (∀ x4 . and (x4SNoL x1) (SNoLe x2 (add_SNo x0 x4))x3)x3)
Known add_SNo_assoc_4add_SNo_assoc_4 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo x0 (add_SNo x1 (add_SNo x2 x3)) = add_SNo (add_SNo x0 (add_SNo x1 x2)) x3
Known SNoLeLt_traSNoLeLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLt x1 x2SNoLt x0 x2
Known add_SNo_Le2add_SNo_Le2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x1 x2SNoLe (add_SNo x0 x1) (add_SNo x0 x2)
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Known mul_SNo_Lemul_SNo_Le : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLe x2 x0SNoLe x3 x1SNoLe (add_SNo (mul_SNo x2 x1) (mul_SNo x0 x3)) (add_SNo (mul_SNo x0 x1) (mul_SNo x2 x3))
Known add_SNo_Lt2add_SNo_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x1 x2SNoLt (add_SNo x0 x1) (add_SNo x0 x2)
Known mul_SNo_Ltmul_SNo_Lt : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt x2 x0SNoLt x3 x1SNoLt (add_SNo (mul_SNo x2 x1) (mul_SNo x0 x3)) (add_SNo (mul_SNo x0 x1) (mul_SNo x2 x3))
Known SNoR_ESNoR_E : ∀ x0 . SNo x0∀ x1 . x1SNoR x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x2)x2
Known SNoR_SNoSSNoR_SNoS : ∀ x0 . SNo x0∀ x1 . x1SNoR x0x1SNoS_ (SNoLev x0)
Known add_SNo_SNoR_interpolateadd_SNo_SNoR_interpolate : ∀ x0 x1 . SNo x0SNo x1∀ x2 . x2SNoR (add_SNo x0 x1)or (∀ x3 : ο . (∀ x4 . and (x4SNoR x0) (SNoLe (add_SNo x4 x1) x2)x3)x3) (∀ x3 : ο . (∀ x4 . and (x4SNoR x1) (SNoLe (add_SNo x0 x4) x2)x3)x3)
Known add_SNo_minus_Lt2b3add_SNo_minus_Lt2b3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt (add_SNo x3 x2) (add_SNo x0 x1)SNoLt x3 (add_SNo x0 (add_SNo x1 (minus_SNo x2)))
Known SNoLtLe_traSNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known mul_SNo_SNoL_interpolate_impredmul_SNo_SNoL_interpolate_impred : ∀ x0 x1 . SNo x0SNo x1∀ x2 . x2SNoL (mul_SNo x0 x1)∀ x3 : ο . (∀ x4 . x4SNoL x0∀ x5 . x5SNoL x1SNoLe (add_SNo x2 (mul_SNo x4 x5)) (add_SNo (mul_SNo x4 x1) (mul_SNo x0 x5))x3)(∀ x4 . x4SNoR x0∀ x5 . x5SNoR x1SNoLe (add_SNo x2 (mul_SNo x4 x5)) (add_SNo (mul_SNo x4 x1) (mul_SNo x0 x5))x3)x3
Known add_SNo_com_4_inner_midadd_SNo_com_4_inner_mid : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3add_SNo (add_SNo x0 x1) (add_SNo x2 x3) = add_SNo (add_SNo x0 x2) (add_SNo x1 x3)
Known add_SNo_Le1add_SNo_Le1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x2SNoLe (add_SNo x0 x1) (add_SNo x2 x1)
Known add_SNo_Lt1add_SNo_Lt1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x2SNoLt (add_SNo x0 x1) (add_SNo x2 x1)
Known mul_SNo_SNoR_interpolate_impredmul_SNo_SNoR_interpolate_impred : ∀ x0 x1 . SNo x0SNo x1∀ x2 . x2SNoR (mul_SNo x0 x1)∀ x3 : ο . (∀ x4 . x4SNoL x0∀ x5 . x5SNoR x1SNoLe (add_SNo (mul_SNo x4 x1) (mul_SNo x0 x5)) (add_SNo x2 (mul_SNo x4 x5))x3)(∀ x4 . x4SNoR x0∀ x5 . x5SNoL x1SNoLe (add_SNo (mul_SNo x4 x1) (mul_SNo x0 x5)) (add_SNo x2 (mul_SNo x4 x5))x3)x3
Known add_SNo_eqadd_SNo_eq : ∀ x0 . SNo x0∀ x1 . SNo x1add_SNo x0 x1 = SNoCut (binunion {add_SNo x3 x1|x3 ∈ SNoL x0} (prim5 (SNoL x1) (add_SNo x0))) (binunion {add_SNo x3 x1|x3 ∈ SNoR x0} (prim5 (SNoR x1) (add_SNo x0)))
Theorem mul_SNo_distrRmul_SNo_distrR : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo (add_SNo x0 x1) x2 = add_SNo (mul_SNo x0 x2) (mul_SNo x1 x2) (proof)
Known mul_SNo_commul_SNo_com : ∀ x0 x1 . SNo x0SNo x1mul_SNo x0 x1 = mul_SNo x1 x0
Theorem mul_SNo_distrLmul_SNo_distrL : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2mul_SNo x0 (add_SNo x1 x2) = add_SNo (mul_SNo x0 x1) (mul_SNo x0 x2) (proof)