∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3 ⟶ x1 x3 x2) ⟶ (∀ x2 . x2 ⊆ x0 ⟶ atleastp u3 x2 ⟶ not (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ x1 x3 x4)) ⟶ ∀ x2 x3 x4 . nat_p x4 ⟶ ∀ x5 x6 x7 . x5 ⊆ x0 ⟶ x6 ⊆ x0 ⟶ x7 ⊆ x0 ⟶ x5 = setminus (DirGraphOutNeighbors x0 x1 x3) (Sing x2) ⟶ (∀ x8 . x8 ∈ x6 ⟶ nIn x8 x5) ⟶ (∀ x8 . x8 ∈ x6 ⟶ nIn x8 x7) ⟶ (∀ x8 . x8 ∈ x5 ⟶ nIn x8 x7) ⟶ (∀ x8 . x8 ∈ x7 ⟶ x8 ∈ {x9 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x3) (Sing x3))|equip (binintersect (DirGraphOutNeighbors x0 x1 x9) (DirGraphOutNeighbors x0 x1 x3)) x4}) ⟶ ∀ x8 x9 . x8 ∈ x6 ⟶ x9 ∈ x7 ⟶ x9 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x2) (Sing x2)) ⟶ x1 x8 x9 ⟶ ∀ x10 : ι → ι . (∀ x11 . x11 ∈ x6 ⟶ x10 x11 ∈ x5) ⟶ (∀ x11 . x11 ∈ x6 ⟶ x1 x11 (x10 x11)) ⟶ (∀ x11 . x11 ∈ x5 ⟶ ∀ x12 : ο . (∀ x13 . and (x13 ∈ x6) (x10 x13 = x11) ⟶ x12) ⟶ x12) ⟶ atleastp x4 {x11 ∈ setminus x6 (Sing x8)|x1 (x10 x11) x9} |
|