Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrBdb../ce8f8..
PUSqN../220fc..
vout
PrBdb../896e6.. 99.99 bars
TMdjw../279ac.. ownership of 2fd91.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMKzW../719d3.. ownership of 6535c.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMXF8../03020.. ownership of 49304.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMUCZ../c5956.. ownership of 533ea.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMTAT../64c78.. ownership of ddbae.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMa6w../b1476.. ownership of cc47c.. as prop with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMNXK../5d73e.. ownership of daacd.. as obj with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMSzR../06173.. ownership of b0e61.. as obj with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMcfN../396c9.. ownership of f3f54.. as obj with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMZtT../9ac04.. ownership of 0879f.. as obj with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMXCR../1fcde.. ownership of 2e027.. as obj with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMEuM../07bc9.. ownership of b74c3.. as obj with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMcYF../4e1db.. ownership of 47c33.. as obj with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
TMQ2Z../1b5a8.. ownership of b01cd.. as obj with payaddr PrHS6.. rights free controlledby PrHS6.. upto 0
PUeeb../90173.. doc published by PrHS6..
Param pack_upack_u : ι(ιι) → ι
Param setsumsetsum : ιιι
Param combine_funcscombine_funcs : ιι(ιι) → (ιι) → ιι
Param Inj1Inj1 : ιι
Definition 47c33.. := λ x0 . pack_u (setsum x0 x0) (combine_funcs x0 x0 Inj1 Inj1)
Param lamSigma : ι(ιι) → ι
Param Inj0Inj0 : ιι
Param apap : ιιι
Definition 2e027.. := λ x0 x1 x2 . lam (setsum x0 x0) (combine_funcs x0 x0 (λ x3 . Inj0 (ap x2 x3)) (λ x3 . Inj1 (ap x2 x3)))
Definition f3f54.. := λ x0 . lam x0 Inj0
Param unpack_u_iunpack_u_i : ι(ι(ιι) → ι) → ι
Definition daacd.. := λ x0 . unpack_u_i x0 (λ x1 . λ x2 : ι → ι . lam (setsum x1 x1) (combine_funcs x1 x1 (λ x3 . x3) x2))
Param MetaAdjunction_strictMetaAdjunction_strict : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → (ιι) → (ιιιι) → (ιι) → (ιι) → ο
Param TrueTrue : ο
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Definition HomSetSetHom := λ x0 x1 x2 . x2setexp x1 x0
Definition lam_idlam_id := λ x0 . lam x0 (λ x1 . x1)
Definition lam_complam_comp := λ x0 x1 x2 . lam x0 (λ x3 . ap x1 (ap x2 x3))
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition struct_ustruct_u := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι . (∀ x4 . x4x2x3 x4x2)x1 (pack_u x2 x3))x1 x0
Param unpack_u_ounpack_u_o : ι(ι(ιι) → ο) → ο
Definition 9f253..struct_u_idem := λ x0 . and (struct_u x0) (unpack_u_o x0 (λ x1 . λ x2 : ι → ι . ∀ x3 . x3x1x2 (x2 x3) = x2 x3))
Param UnaryFuncHomHom_struct_u : ιιιο
Definition struct_idstruct_id := λ x0 . lam_id (ap x0 0)
Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)
Param MetaFunctor_strictMetaFunctor_strict : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → ο
Param MetaFunctorMetaFunctor : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → ο
Param MetaNatTransMetaNatTrans : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → (ιι) → (ιιιι) → (ιι) → ο
Param MetaAdjunctionMetaAdjunction : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → (ιι) → (ιιιι) → (ιι) → (ιι) → ο
Known d6aa5..MetaAdjunction_strict_I : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 x13 : ι → ι . MetaFunctor_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9MetaFunctor x4 x5 x6 x7 x0 x1 x2 x3 x10 x11MetaNatTrans x0 x1 x2 x3 x0 x1 x2 x3 (λ x14 . x14) (λ x14 x15 x16 . x16) (λ x14 . x10 (x8 x14)) (λ x14 x15 x16 . x11 (x8 x14) (x8 x15) (x9 x14 x15 x16)) x12MetaNatTrans x4 x5 x6 x7 x4 x5 x6 x7 (λ x14 . x8 (x10 x14)) (λ x14 x15 x16 . x9 (x10 x14) (x10 x15) (x11 x14 x15 x16)) (λ x14 . x14) (λ x14 x15 x16 . x16) x13MetaAdjunction x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13MetaAdjunction_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13
Param MetaCatMetaCat : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Known 5cbb4..MetaFunctor_strict_I : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . MetaCat x0 x1 x2 x3MetaCat x4 x5 x6 x7MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9MetaFunctor_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9
Known e4125..MetaCatSet : MetaCat (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0)
Known 31a6e..MetaCat_struct_u_idem : MetaCat 9f253.. UnaryFuncHom struct_id struct_comp
Known 2cb62..MetaFunctorI : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . (∀ x10 . x0 x10x4 (x8 x10))(∀ x10 x11 x12 . x0 x10x0 x11x1 x10 x11 x12x5 (x8 x10) (x8 x11) (x9 x10 x11 x12))(∀ x10 . x0 x10x9 x10 x10 (x2 x10) = x6 (x8 x10))(∀ x10 x11 x12 x13 x14 . x0 x10x0 x11x0 x12x1 x10 x11 x13x1 x11 x12 x14x9 x10 x12 (x3 x10 x11 x12 x14 x13) = x7 (x8 x10) (x8 x11) (x8 x12) (x9 x11 x12 x14) (x9 x10 x11 x13))MetaFunctor x0 x1 x2 x3 x4 x5 x6 x7 x8 x9
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known pack_struct_u_Ipack_struct_u_I : ∀ x0 . ∀ x1 : ι → ι . (∀ x2 . x2x0x1 x2x0)struct_u (pack_u x0 x1)
Known unpack_u_o_equnpack_u_o_eq : ∀ x0 : ι → (ι → ι) → ο . ∀ x1 . ∀ x2 : ι → ι . (∀ x3 : ι → ι . (∀ x4 . x4x1x2 x4 = x3 x4)x0 x1 x3 = x0 x1 x2)unpack_u_o (pack_u x1 x2) x0 = x0 x1 x2
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known setsum_Inj_invsetsum_Inj_inv : ∀ x0 x1 x2 . x2setsum x0 x1or (∀ x3 : ο . (∀ x4 . and (x4x0) (x2 = Inj0 x4)x3)x3) (∀ x3 : ο . (∀ x4 . and (x4x1) (x2 = Inj1 x4)x3)x3)
Known combine_funcs_eq1combine_funcs_eq1 : ∀ x0 x1 . ∀ x2 x3 : ι → ι . ∀ x4 . combine_funcs x0 x1 x2 x3 (Inj0 x4) = x2 x4
Known combine_funcs_eq2combine_funcs_eq2 : ∀ x0 x1 . ∀ x2 x3 : ι → ι . ∀ x4 . combine_funcs x0 x1 x2 x3 (Inj1 x4) = x3 x4
Known 66c4c..Hom_struct_u_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ι . ∀ x4 . UnaryFuncHom (pack_u x0 x2) (pack_u x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0ap x4 (x2 x6) = x3 (ap x4 x6))
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Known Inj0_setsumInj0_setsum : ∀ x0 x1 x2 . x2x0Inj0 x2setsum x0 x1
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Known Inj1_setsumInj1_setsum : ∀ x0 x1 x2 . x2x1Inj1 x2setsum x0 x1
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Known pack_u_0_eq2pack_u_0_eq2 : ∀ x0 . ∀ x1 : ι → ι . x0 = ap (pack_u x0 x1) 0
Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)lam x0 x1 = lam x0 x2
Known 3605e..MetaCat_struct_u_idem_Forgetful : MetaFunctor 9f253.. UnaryFuncHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2)
Known c1d68..MetaNatTransI : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 : ι → ι . (∀ x13 . x0 x13x5 (x8 x13) (x10 x13) (x12 x13))(∀ x13 x14 x15 . x0 x13x0 x14x1 x13 x14 x15x7 (x8 x13) (x10 x13) (x10 x14) (x11 x13 x14 x15) (x12 x13) = x7 (x8 x13) (x8 x14) (x10 x14) (x12 x14) (x9 x13 x14 x15))MetaNatTrans x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12
Known fd494..MetaAdjunctionI : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 x13 : ι → ι . (∀ x14 . x0 x14x7 (x8 x14) (x8 (x10 (x8 x14))) (x8 x14) (x13 (x8 x14)) (x9 x14 (x10 (x8 x14)) (x12 x14)) = x6 (x8 x14))(∀ x14 . x4 x14x3 (x10 x14) (x10 (x8 (x10 x14))) (x10 x14) (x11 (x8 (x10 x14)) x14 (x13 x14)) (x12 (x10 x14)) = x2 (x10 x14))MetaAdjunction x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13
Known unpack_u_i_equnpack_u_i_eq : ∀ x0 : ι → (ι → ι) → ι . ∀ x1 . ∀ x2 : ι → ι . (∀ x3 : ι → ι . (∀ x4 . x4x1x2 x4 = x3 x4)x0 x1 x3 = x0 x1 x2)unpack_u_i (pack_u x1 x2) x0 = x0 x1 x2
Known prop_ext_2prop_ext_2 : ∀ x0 x1 : ο . (x0x1)(x1x0)x0 = x1
Theorem ddbae.. : MetaAdjunction_strict (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) 9f253.. UnaryFuncHom struct_id struct_comp 47c33.. 2e027.. (λ x0 . ap x0 0) (λ x0 x1 x2 . x2) f3f54.. daacd.. (proof)
Theorem 49304..MetaCat_struct_u_idem_left_adjoint_forgetful : ∀ x0 : ο . (∀ x1 : ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι . MetaAdjunction_strict (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) 9f253.. UnaryFuncHom struct_id struct_comp x1 x3 (λ x8 . ap x8 0) (λ x8 x9 x10 . x10) x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Param MetaCat_initial_pinitial_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ο
Known 80cab..MetaCatSet_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p (λ x4 . True) HomSet (λ x4 . lam x4 (λ x5 . x5)) (λ x4 x5 x6 x7 x8 . lam x4 (λ x9 . ap x7 (ap x8 x9))) x1 x3x2)x2)x0)x0
Known 09501.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 : ι → ο . ∀ x5 : ι → ι → ι → ο . ∀ x6 : ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 : ι → ι . ∀ x9 : ι → ι → ι → ι . ∀ x10 : ι → ι . ∀ x11 : ι → ι → ι → ι . ∀ x12 x13 : ι → ι . MetaAdjunction_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13∀ x14 . ∀ x15 : ι → ι . MetaCat_initial_p x0 x1 x2 x3 x14 x15∀ x16 : ο . (∀ x17 : ι → ι . MetaCat_initial_p x4 x5 x6 x7 (x8 x14) x17x16)x16
Theorem 2fd91..MetaCat_struct_u_idem_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p 9f253.. UnaryFuncHom struct_id struct_comp x1 x3x2)x2)x0)x0 (proof)