Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrMcS..
/
d6683..
PUeAj..
/
ca5dc..
vout
PrMcS..
/
4fe1c..
19.98 bars
TMJ3A..
/
04685..
ownership of
61fbf..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMKNG..
/
69093..
ownership of
35371..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMT3b..
/
e7e95..
ownership of
84048..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMTMa..
/
d4e8b..
ownership of
cf9d3..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMdJy..
/
1e1fd..
ownership of
272ea..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMRmk..
/
39065..
ownership of
b861a..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMYNa..
/
1acad..
ownership of
58cb3..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMFy6..
/
45e11..
ownership of
8b905..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMUxY..
/
b4ccc..
ownership of
67b52..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMXGb..
/
86075..
ownership of
6cbaa..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMUpU..
/
32806..
ownership of
bf993..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMGkB..
/
2c32e..
ownership of
18887..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMTPx..
/
fa54b..
ownership of
31431..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMdmP..
/
8d841..
ownership of
766cf..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMWxJ..
/
8328f..
ownership of
19ff6..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMRrF..
/
303c5..
ownership of
451aa..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMPXs..
/
f42ce..
ownership of
e9411..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMYMj..
/
2b449..
ownership of
f451e..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMdYg..
/
c10e8..
ownership of
7cbcc..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMW7q..
/
da631..
ownership of
a0dc2..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMa5d..
/
39785..
ownership of
11a63..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMZHN..
/
c6f07..
ownership of
a492e..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMUhj..
/
93cff..
ownership of
02ada..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMS4y..
/
3a199..
ownership of
c3e2e..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
PUX9e..
/
09ed4..
doc published by
Pr6Pc..
Definition
c3e2e..
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 .
λ x4 :
ι →
ι → ι
.
λ x5 x6 .
∀ x7 :
ι →
ι → ο
.
x7
x1
x3
⟶
(
∀ x8 .
x8
∈
x0
⟶
∀ x9 .
x7
x8
x9
⟶
x7
(
x2
x8
)
(
x4
x8
x9
)
)
⟶
x7
x5
x6
Param
explicit_Nats
explicit_Nats
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Known
explicit_Nats_ind
explicit_Nats_ind
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 :
ι → ο
.
x3
x1
⟶
(
∀ x4 .
x4
∈
x0
⟶
x3
x4
⟶
x3
(
x2
x4
)
)
⟶
∀ x4 .
x4
∈
x0
⟶
x3
x4
Theorem
e9411..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 .
∀ x4 :
ι →
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 : ο .
(
∀ x7 .
c3e2e..
x0
x1
x2
x3
x4
x5
x7
⟶
x6
)
⟶
x6
(proof)
Known
explicit_Nats_E
explicit_Nats_E
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 : ο .
(
explicit_Nats
x0
x1
x2
⟶
x1
∈
x0
⟶
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
∈
x0
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
=
x1
⟶
∀ x5 : ο .
x5
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x2
x4
=
x2
x5
⟶
x4
=
x5
)
⟶
(
∀ x4 :
ι → ο
.
x4
x1
⟶
(
∀ x5 .
x4
x5
⟶
x4
(
x2
x5
)
)
⟶
∀ x5 .
x5
∈
x0
⟶
x4
x5
)
⟶
x3
)
⟶
explicit_Nats
x0
x1
x2
⟶
x3
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
451aa..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 .
∀ x4 :
ι →
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x5 .
c3e2e..
x0
x1
x2
x3
x4
x1
x5
⟶
x5
=
x3
(proof)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
19ff6..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 .
∀ x4 :
ι →
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
c3e2e..
x0
x1
x2
x3
x4
(
x2
x5
)
x6
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x6
=
x4
x5
x8
)
(
c3e2e..
x0
x1
x2
x3
x4
x5
x8
)
⟶
x7
)
⟶
x7
(proof)
Theorem
766cf..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 .
∀ x4 :
ι →
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 x7 .
c3e2e..
x0
x1
x2
x3
x4
x5
x6
⟶
c3e2e..
x0
x1
x2
x3
x4
x5
x7
⟶
x6
=
x7
(proof)
Definition
explicit_Nats_primrec
explicit_Nats_primrec
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 .
λ x4 :
ι →
ι → ι
.
λ x5 .
prim0
(
c3e2e..
x0
x1
x2
x3
x4
x5
)
Known
Eps_i_ex
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Theorem
31431..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 .
∀ x4 :
ι →
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x5 .
x5
∈
x0
⟶
c3e2e..
x0
x1
x2
x3
x4
x5
(
explicit_Nats_primrec
x0
x1
x2
x3
x4
x5
)
(proof)
Theorem
explicit_Nats_primrec_base
explicit_Nats_primrec_base
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 .
∀ x4 :
ι →
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
explicit_Nats_primrec
x0
x1
x2
x3
x4
x1
=
x3
(proof)
Theorem
explicit_Nats_primrec_S
explicit_Nats_primrec_S
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
∀ x3 .
∀ x4 :
ι →
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x5 .
x5
∈
x0
⟶
explicit_Nats_primrec
x0
x1
x2
x3
x4
(
x2
x5
)
=
x4
x5
(
explicit_Nats_primrec
x0
x1
x2
x3
x4
x5
)
(proof)
Definition
explicit_Nats_zero_plus
explicit_Nats_zero_plus
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 .
explicit_Nats_primrec
x0
x1
x2
x4
(
λ x5 .
x2
)
x3
Definition
explicit_Nats_zero_mult
explicit_Nats_zero_mult
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 .
explicit_Nats_primrec
x0
x1
x2
x1
(
λ x5 .
explicit_Nats_zero_plus
x0
x1
x2
x4
)
x3
Theorem
explicit_Nats_zero_plus_0L
explicit_Nats_zero_plus_0L
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
explicit_Nats_zero_plus
x0
x1
x2
x1
x3
=
x3
(proof)
Theorem
explicit_Nats_zero_plus_SL
explicit_Nats_zero_plus_SL
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
explicit_Nats_zero_plus
x0
x1
x2
(
x2
x3
)
x4
=
x2
(
explicit_Nats_zero_plus
x0
x1
x2
x3
x4
)
(proof)
Theorem
explicit_Nats_zero_mult_0L
explicit_Nats_zero_mult_0L
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
explicit_Nats_zero_mult
x0
x1
x2
x1
x3
=
x1
(proof)
Theorem
explicit_Nats_zero_mult_SL
explicit_Nats_zero_mult_SL
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
explicit_Nats_zero_mult
x0
x1
x2
(
x2
x3
)
x4
=
explicit_Nats_zero_plus
x0
x1
x2
x4
(
explicit_Nats_zero_mult
x0
x1
x2
x3
x4
)
(proof)
Definition
explicit_Nats_one_plus
explicit_Nats_one_plus
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 .
explicit_Nats_primrec
x0
x1
x2
(
x2
x4
)
(
λ x5 .
x2
)
x3
Definition
explicit_Nats_one_mult
explicit_Nats_one_mult
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 x4 .
explicit_Nats_primrec
x0
x1
x2
x4
(
λ x5 .
explicit_Nats_one_plus
x0
x1
x2
x4
)
x3
Definition
explicit_Nats_one_exp
explicit_Nats_one_exp
:=
λ x0 x1 .
λ x2 :
ι → ι
.
λ x3 .
explicit_Nats_primrec
x0
x1
x2
x3
(
λ x4 .
explicit_Nats_one_mult
x0
x1
x2
x3
)
Theorem
explicit_Nats_one_plus_1L
explicit_Nats_one_plus_1L
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
explicit_Nats_one_plus
x0
x1
x2
x1
x3
=
x2
x3
(proof)
Theorem
explicit_Nats_one_plus_SL
explicit_Nats_one_plus_SL
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
explicit_Nats_one_plus
x0
x1
x2
(
x2
x3
)
x4
=
x2
(
explicit_Nats_one_plus
x0
x1
x2
x3
x4
)
(proof)
Theorem
explicit_Nats_one_mult_1L
explicit_Nats_one_mult_1L
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
explicit_Nats_one_mult
x0
x1
x2
x1
x3
=
x3
(proof)
Theorem
explicit_Nats_one_mult_SL
explicit_Nats_one_mult_SL
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
explicit_Nats_one_mult
x0
x1
x2
(
x2
x3
)
x4
=
explicit_Nats_one_plus
x0
x1
x2
x4
(
explicit_Nats_one_mult
x0
x1
x2
x3
x4
)
(proof)
Theorem
explicit_Nats_one_exp_1L
explicit_Nats_one_exp_1L
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
explicit_Nats_one_exp
x0
x1
x2
x3
x1
=
x3
(proof)
Theorem
explicit_Nats_one_exp_SL
explicit_Nats_one_exp_SL
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
explicit_Nats
x0
x1
x2
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
explicit_Nats_one_exp
x0
x1
x2
x3
(
x2
x4
)
=
explicit_Nats_one_mult
x0
x1
x2
x3
(
explicit_Nats_one_exp
x0
x1
x2
x3
x4
)
(proof)