Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrEMz..
/
2c6c8..
PUShf..
/
d8dbb..
vout
PrEMz..
/
e6605..
99.97 bars
TMShM..
/
3a53f..
negprop ownership controlledby
PrKYB..
upto 0
TMYGx..
/
9b7ba..
negprop ownership controlledby
PrKYB..
upto 0
TMVtN..
/
2de69..
negprop ownership controlledby
PrKYB..
upto 0
TMMJQ..
/
cbbf6..
negprop ownership controlledby
PrKYB..
upto 0
TMFcU..
/
0a24e..
ownership of
62ee6..
as prop with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
TMd4W..
/
8af30..
ownership of
cbb88..
as prop with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
TMNtM..
/
cacb8..
ownership of
e5932..
as prop with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
TMMkw..
/
8ced4..
ownership of
53e90..
as prop with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
TMXV1..
/
a93d8..
ownership of
e6a94..
as prop with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
TMdum..
/
65355..
ownership of
40480..
as prop with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
TMWcs..
/
828ae..
ownership of
87240..
as prop with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
TMFV6..
/
922a9..
ownership of
4b5c9..
as prop with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
TMdmF..
/
3e180..
ownership of
27155..
as prop with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
TMMVt..
/
f7a86..
ownership of
57c1a..
as prop with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
PUURq..
/
2e7b2..
doc published by
PrKYB..
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
prop_ext_2
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Theorem
27155..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
and
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x2
(
x2
x4
x5
)
x6
=
x2
x4
(
x2
x5
x6
)
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
∀ x6 .
x6
∈
x0
⟶
and
(
x2
x6
x5
=
x6
)
(
x2
x5
x6
=
x6
)
)
⟶
x4
)
⟶
x4
)
=
and
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x1
(
x1
x4
x5
)
x6
=
x1
x4
(
x1
x5
x6
)
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
∀ x6 .
x6
∈
x0
⟶
and
(
x1
x6
x5
=
x6
)
(
x1
x5
x6
=
x6
)
)
⟶
x4
)
⟶
x4
)
(proof)
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
MetaCat_initial_p
initial_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
and
(
x0
x4
)
(
∀ x6 .
x0
x6
⟶
and
(
x1
x4
x6
(
x5
x6
)
)
(
∀ x7 .
x1
x4
x6
x7
⟶
x7
=
x5
x6
)
)
Param
pack_b
pack_b
:
ι
→
CT2
ι
Definition
struct_b
struct_b
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
∀ x5 .
x5
∈
x2
⟶
x3
x4
x5
∈
x2
)
⟶
x1
(
pack_b
x2
x3
)
)
⟶
x1
x0
Param
unpack_b_o
unpack_b_o
:
ι
→
(
ι
→
(
ι
→
ι
→
ι
) →
ο
) →
ο
Definition
Monoid
struct_b_monoid
:=
λ x0 .
and
(
struct_b
x0
)
(
unpack_b_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ι
.
and
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
(
x2
x3
x4
)
x5
=
x2
x3
(
x2
x4
x5
)
)
(
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
∀ x5 .
x5
∈
x1
⟶
and
(
x2
x5
x4
=
x5
)
(
x2
x4
x5
=
x5
)
)
⟶
x3
)
⟶
x3
)
)
)
Param
MagmaHom
Hom_struct_b
:
ι
→
ι
→
ι
→
ο
Param
struct_id
struct_id
:
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
ap
ap
:
ι
→
ι
→
ι
Definition
lam_comp
lam_comp
:=
λ x0 x1 x2 .
lam
x0
(
λ x3 .
ap
x1
(
ap
x2
x3
)
)
Definition
struct_comp
struct_comp
:=
λ x0 x1 x2 .
lam_comp
(
ap
x0
0
)
Known
unpack_b_o_eq
unpack_b_o_eq
:
∀ x0 :
ι →
(
ι →
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 :
ι →
ι → ι
.
(
∀ x3 :
ι →
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x4
x5
=
x3
x4
x5
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_b_o
(
pack_b
x1
x2
)
x0
=
x0
x1
x2
Param
ordsucc
ordsucc
:
ι
→
ι
Param
SNo
SNo
:
ι
→
ο
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Known
2cd8d..
Hom_struct_b_pack
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ι
.
∀ x4 .
MagmaHom
(
pack_b
x0
x2
)
(
pack_b
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
ap
x4
(
x2
x6
x7
)
=
x3
(
ap
x4
x6
)
(
ap
x4
x7
)
)
Known
neq_0_1
neq_0_1
:
0
=
1
⟶
∀ x0 : ο .
x0
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Known
In_1_2
In_1_2
:
1
∈
2
Known
mul_SNo_oneL
mul_SNo_oneL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
1
x0
=
x0
Known
SNo_1
SNo_1
:
SNo
1
Known
In_0_2
In_0_2
:
0
∈
2
Known
mul_SNo_zeroL
mul_SNo_zeroL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
0
x0
=
0
Known
SNo_0
SNo_0
:
SNo
0
Known
pack_struct_b_I
pack_struct_b_I
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
∈
x0
)
⟶
struct_b
(
pack_b
x0
x1
)
Known
mul_SNo_assoc
mul_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
(
mul_SNo
x0
x1
)
x2
Known
mul_SNo_oneR
mul_SNo_oneR
:
∀ x0 .
SNo
x0
⟶
mul_SNo
x0
1
=
x0
Known
cases_2
cases_2
:
∀ x0 .
x0
∈
2
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
1
⟶
x1
x0
Param
omega
omega
:
ι
Known
omega_SNo
omega_SNo
:
∀ x0 .
x0
∈
omega
⟶
SNo
x0
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_p_trans
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
Known
nat_2
nat_2
:
nat_p
2
Theorem
87240..
:
not
(
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
Monoid
MagmaHom
struct_id
struct_comp
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
)
(proof)
Definition
MetaCat_equalizer_p
equalizer_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 .
λ x10 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x1
x4
x5
x6
)
)
(
x1
x4
x5
x7
)
)
(
x0
x8
)
)
(
x1
x8
x4
x9
)
)
(
x3
x8
x4
x5
x6
x9
=
x3
x8
x4
x5
x7
x9
)
)
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x1
x11
x4
x12
⟶
x3
x11
x4
x5
x6
x12
=
x3
x11
x4
x5
x7
x12
⟶
and
(
and
(
x1
x11
x8
(
x10
x11
x12
)
)
(
x3
x11
x8
x4
x9
(
x10
x11
x12
)
=
x12
)
)
(
∀ x13 .
x1
x11
x8
x13
⟶
x3
x11
x8
x4
x9
x13
=
x12
⟶
x13
=
x10
x11
x12
)
)
Definition
MetaCat_equalizer_struct_p
equalizer_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 :
ι →
ι →
ι →
ι → ι
.
λ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 x8 .
x0
x7
⟶
x0
x8
⟶
∀ x9 x10 .
x1
x7
x8
x9
⟶
x1
x7
x8
x10
⟶
MetaCat_equalizer_p
x0
x1
x2
x3
x7
x8
x9
x10
(
x4
x7
x8
x9
x10
)
(
x5
x7
x8
x9
x10
)
(
x6
x7
x8
x9
x10
)
Known
pack_b_0_eq2
pack_b_0_eq2
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
x0
=
ap
(
pack_b
x0
x1
)
0
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
In_0_1
In_0_1
:
0
∈
1
Known
cases_1
cases_1
:
∀ x0 .
x0
∈
1
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
x0
Theorem
e6a94..
:
not
(
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
Monoid
MagmaHom
struct_id
struct_comp
x1
x3
x5
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
)
(proof)
Definition
MetaCat_pullback_p
pullback_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 x10 x11 .
λ x12 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x4
x6
x7
)
)
(
x1
x5
x6
x8
)
)
(
x0
x9
)
)
(
x1
x9
x4
x10
)
)
(
x1
x9
x5
x11
)
)
(
x3
x9
x4
x6
x7
x10
=
x3
x9
x5
x6
x8
x11
)
)
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x1
x13
x4
x14
⟶
∀ x15 .
x1
x13
x5
x15
⟶
x3
x13
x4
x6
x7
x14
=
x3
x13
x5
x6
x8
x15
⟶
and
(
and
(
and
(
x1
x13
x9
(
x12
x13
x14
x15
)
)
(
x3
x13
x9
x4
x10
(
x12
x13
x14
x15
)
=
x14
)
)
(
x3
x13
x9
x5
x11
(
x12
x13
x14
x15
)
=
x15
)
)
(
∀ x16 .
x1
x13
x9
x16
⟶
x3
x13
x9
x4
x10
x16
=
x14
⟶
x3
x13
x9
x5
x11
x16
=
x15
⟶
x16
=
x12
x13
x14
x15
)
)
Definition
MetaCat_pullback_struct_p
pullback_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 x4 x5 x6 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 x10 .
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
∀ x11 x12 .
x1
x8
x10
x11
⟶
x1
x9
x10
x12
⟶
MetaCat_pullback_p
x0
x1
x2
x3
x8
x9
x10
x11
x12
(
x4
x8
x9
x10
x11
x12
)
(
x5
x8
x9
x10
x11
x12
)
(
x6
x8
x9
x10
x11
x12
)
(
x7
x8
x9
x10
x11
x12
)
Known
and4I
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Theorem
e5932..
:
not
(
∀ x0 : ο .
(
∀ x1 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι →
ι →
ι →
ι →
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_struct_p
Monoid
MagmaHom
struct_id
struct_comp
x1
x3
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
)
(proof)
Param
MetaAdjunction_strict
MetaAdjunction_strict
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ο
Param
True
True
:
ο
Param
HomSet
SetHom
:
ι
→
ι
→
ι
→
ο
Definition
lam_id
lam_id
:=
λ x0 .
lam
x0
(
λ x1 .
x1
)
Known
80cab..
MetaCatSet_initial
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
MetaCat_initial_p
(
λ x4 .
True
)
HomSet
(
λ x4 .
lam
x4
(
λ x5 .
x5
)
)
(
λ x4 x5 x6 x7 x8 .
lam
x4
(
λ x9 .
ap
x7
(
ap
x8
x9
)
)
)
x1
x3
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
Known
09501..
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 x13 :
ι → ι
.
MetaAdjunction_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
∀ x14 .
∀ x15 :
ι → ι
.
MetaCat_initial_p
x0
x1
x2
x3
x14
x15
⟶
∀ x16 : ο .
(
∀ x17 :
ι → ι
.
MetaCat_initial_p
x4
x5
x6
x7
(
x8
x14
)
x17
⟶
x16
)
⟶
x16
Theorem
62ee6..
:
not
(
∀ x0 : ο .
(
∀ x1 :
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι → ι
.
MetaAdjunction_strict
(
λ x8 .
True
)
HomSet
lam_id
(
λ x8 x9 x10 .
lam_comp
x8
)
Monoid
MagmaHom
struct_id
struct_comp
x1
x3
(
λ x8 .
ap
x8
0
)
(
λ x8 x9 x10 .
x10
)
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
)
(proof)