vout |
---|
PrLbx../1222d.. 5.96 barsTMJSX../c901d.. ownership of 907a2.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0TMZRJ../89674.. ownership of 2cdba.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0PUh73../e8762.. doc published by Pr4zB..Definition SubqSubq := λ x0 x1 . ∀ x2 . x2 ∈ x0 ⟶ x2 ∈ x1Param u22 : ιParam atleastpatleastp : ι → ι → οParam ordsuccordsucc : ι → ιDefinition u1 := 1Definition u2 := ordsucc u1Definition u3 := ordsucc u2Definition FalseFalse := ∀ x0 : ο . x0Definition notnot := λ x0 : ο . x0 ⟶ FalseDefinition 94591.. := λ x0 x1 : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι . λ x2 x3 . x0 (x1 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x3 x2 x3 x3 x3 x3) (x1 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x3 x2) (x1 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x3 x2 x3 x3 x3 x3 x3 x3 x2) (x1 x3 x2 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x3) (x1 x3 x3 x3 x2 x2 x2 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x2 x3) (x1 x3 x2 x3 x3 x2 x3 x2 x2 x2 x3 x3 x3 x3 x3 x2 x3 x3 x3 x3 x3 x2 x3) (x1 x2 x3 x3 x3 x3 x2 x2 x2 x3 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x2 x3 x3 x2 x2 x2 x3 x3 x3 x3 x2 x3 x3 x3) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x3 x3 x2 x3) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x2 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3 x2 x2 x3 x2 x3 x3 x3 x3) (x1 x3 x2 x3 x3 x3 x2 x3 x3 x2 x2 x3 x3 x2 x3 x3 x3 x2 x3 x3 x2 x3 x3) (x1 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3 x2 x3 x3) (x1 x3 x3 x2 x3 x3 x3 x2 x3 x3 x3 x2 x2 x3 x3 x2 x3 x2 x3 x3 x2 x3 x3) (x1 x2 x3 x3 x3 x2 x3 x3 x3 x3 x2 x3 x2 x3 x3 x3 x2 x2 x3 x3 x2 x3 x3) (x1 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x2 x2 x2 x3 x3 x3 x2) (x1 x2 x3 x3 x2 x3 x3 x3 x3 x3 x3 x3 x2 x3 x3 x3 x3 x2 x2 x2 x3 x2 x3) (x1 x3 x3 x3 x3 x2 x3 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x3 x2) (x1 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x2 x2 x2 x3 x3 x2 x2 x2 x3) (x1 x3 x3 x3 x3 x3 x2 x2 x3 x3 x2 x3 x3 x3 x3 x3 x3 x3 x2 x3 x2 x2 x2) (x1 x3 x2 x2 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x3 x2 x3 x2 x3 x2 x2)Param 55574.. : ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ι → ιDefinition 0aea9.. := λ x0 x1 . x0 ∈ u22 ⟶ x1 ∈ u22 ⟶ 94591.. (55574.. x0) (55574.. x1) = λ x3 x4 . x3Param ordinalordinal : ι → οKnown 865bf.. : ∀ x0 . atleastp u3 x0 ⟶ (∀ x1 . x1 ∈ x0 ⟶ ordinal x1) ⟶ ∀ x1 : ο . (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ ∀ x4 . x4 ∈ x0 ⟶ x2 ∈ x3 ⟶ x3 ∈ x4 ⟶ x1) ⟶ x1Param nat_pnat_p : ι → οKnown nat_p_ordinalnat_p_ordinal : ∀ x0 . nat_p x0 ⟶ ordinal x0Known nat_p_transnat_p_trans : ∀ x0 . nat_p x0 ⟶ ∀ x1 . x1 ∈ x0 ⟶ nat_p x1Known daa33.. : nat_p u22Param binunionbinunion : ι → ι → ιParam SingSing : ι → ιDefinition SetAdjoinSetAdjoin := λ x0 x1 . binunion x0 (Sing x1)Param UPairUPair : ι → ι → ιParam setminussetminus : ι → ι → ιParam u17 : ιParam u18 : ιParam u19 : ιParam u20 : ιParam u21 : ιKnown dcb62.. : ∀ x0 . x0 ∈ setminus u22 u17 ⟶ ∀ x1 : ι → ο . x1 u17 ⟶ x1 u18 ⟶ x1 u19 ⟶ x1 u20 ⟶ x1 u21 ⟶ x1 x0Definition nInnIn := λ x0 x1 . not (x0 ∈ x1)Known setminusIsetminusI : ∀ x0 x1 x2 . x2 ∈ x0 ⟶ nIn x2 x1 ⟶ x2 ∈ setminus x0 x1Param TwoRamseyGraph_3_6_17 : ι → ι → οKnown d6d79.. : ∀ x0 . x0 ⊆ u17 ⟶ atleastp u3 x0 ⟶ not (∀ x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x3 : ο . x3) ⟶ TwoRamseyGraph_3_6_17 x1 x2)Known 1dc5a.. : ∀ x0 x1 x2 . nIn x2 x1 ⟶ atleastp x0 x1 ⟶ atleastp (ordsucc x0) (binunion x1 (Sing x2))Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0 ⟶ x2) ⟶ (x1 ⟶ x2) ⟶ x2Known UPairEUPairE : ∀ x0 x1 x2 . x0 ∈ UPair x1 x2 ⟶ or (x0 = x1) (x0 = x2)Known In_no2cycleIn_no2cycle : ∀ x0 x1 . x0 ∈ x1 ⟶ x1 ∈ x0 ⟶ FalseKnown In_irrefIn_irref : ∀ x0 . nIn x0 x0Param equipequip : ι → ι → οKnown equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1 ⟶ atleastp x0 x1Known 1c73f.. : ∀ x0 x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x3 : ο . x3) ⟶ (∀ x3 . x3 ∈ x0 ⟶ or (x3 = x1) (x3 = x2)) ⟶ equip 2 x0Known UPairI1UPairI1 : ∀ x0 x1 . x0 ∈ UPair x0 x1Known UPairI2UPairI2 : ∀ x0 x1 . x1 ∈ UPair x0 x1Known 48f02.. : ∀ x0 . x0 ∈ u17 ⟶ ∀ x1 . x1 ∈ u17 ⟶ 0aea9.. x0 x1 ⟶ TwoRamseyGraph_3_6_17 x0 x1Known nat_transnat_trans : ∀ x0 . nat_p x0 ⟶ ∀ x1 . x1 ∈ x0 ⟶ x1 ⊆ x0Known nat_17nat_17 : nat_p u17Param u4 : ιParam u5 : ιParam u6 : ιParam u7 : ιParam u8 : ιParam u9 : ιParam u10 : ιParam u11 : ιParam u12 : ιParam u13 : ιParam u14 : ιParam u15 : ιParam u16 : ιKnown 66f20.. : ∀ x0 . x0 ∈ u17 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 u3 ⟶ x1 u4 ⟶ x1 u5 ⟶ x1 u6 ⟶ x1 u7 ⟶ x1 u8 ⟶ x1 u9 ⟶ x1 u10 ⟶ x1 u11 ⟶ x1 u12 ⟶ x1 u13 ⟶ x1 u14 ⟶ x1 u15 ⟶ x1 u16 ⟶ x1 x0Known EmptyEEmptyE : ∀ x0 . nIn x0 0Known 768c1.. : ((λ x1 x2 . x2) = λ x1 x2 . x1) ⟶ ∀ x0 : ο . x0Known e86b0.. : 55574.. u17 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x18Known aafc6.. : 55574.. u1 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x2Known 617e2.. : u1 ∈ u22Known 96b76.. : u17 ∈ u22Known fa851.. : 55574.. u2 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x3Known a7839.. : u2 ∈ u22Known cases_3cases_3 : ∀ x0 . x0 ∈ u3 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 x0Known 9379b.. : 55574.. u3 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x4Known 7410a.. : 55574.. 0 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x1Known c34a2.. : 0 ∈ u22Known 9018e.. : u3 ∈ u22Known 5f4d4.. : 55574.. u4 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x5Known 540e6.. : u4 ∈ u22Known b535d.. : 55574.. u5 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x6Known 8a085.. : u5 ∈ u22Known 8ef56.. : 55574.. u6 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x7Known 8f513.. : u6 ∈ u22Known 151b0.. : 55574.. u7 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x8Known 3224f.. : u7 ∈ u22Known 9e99f.. : 55574.. u8 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x9Known e5453.. : u8 ∈ u22Known 896c4.. : 55574.. u9 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x10Known 8413f.. : u9 ∈ u22Known 89d98.. : 55574.. u10 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x11Known abaf6.. : u10 ∈ u22Known 83484.. : ∀ x0 . x0 ∈ u11 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 u3 ⟶ x1 u4 ⟶ x1 u5 ⟶ x1 u6 ⟶ x1 u7 ⟶ x1 u8 ⟶ x1 u9 ⟶ x1 u10 ⟶ x1 x0Known 76683.. : 55574.. u11 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x12Known 0158f.. : u11 ∈ u22Known 2ab0d.. : 55574.. u12 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x13Known 126ca.. : u12 ∈ u22Known 0b155.. : 55574.. u13 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x14Known 49a59.. : u13 ∈ u22Known 38fc2.. : 55574.. u14 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x15Known caae0.. : u14 ∈ u22Known 134b9.. : 55574.. u15 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x16Known 9c9ec.. : u15 ∈ u22Known 660da.. : ∀ x0 . x0 ∈ u16 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 u3 ⟶ x1 u4 ⟶ x1 u5 ⟶ x1 u6 ⟶ x1 u7 ⟶ x1 u8 ⟶ x1 u9 ⟶ x1 u10 ⟶ x1 u11 ⟶ x1 u12 ⟶ x1 u13 ⟶ x1 u14 ⟶ x1 u15 ⟶ x1 x0Known b8157.. : 55574.. u16 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x17Known d63b1.. : u16 ∈ u22Known f9732.. : ∀ x0 . x0 ∈ u18 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 u3 ⟶ x1 u4 ⟶ x1 u5 ⟶ x1 u6 ⟶ x1 u7 ⟶ x1 u8 ⟶ x1 u9 ⟶ x1 u10 ⟶ x1 u11 ⟶ x1 u12 ⟶ x1 u13 ⟶ x1 u14 ⟶ x1 u15 ⟶ x1 u16 ⟶ x1 u17 ⟶ x1 x0Known bb555.. : 55574.. u18 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x19Known 7ba92.. : u18 ∈ u22Known cases_4cases_4 : ∀ x0 . x0 ∈ u4 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 u3 ⟶ x1 x0Known cases_7cases_7 : ∀ x0 . x0 ∈ u7 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 u3 ⟶ x1 u4 ⟶ x1 u5 ⟶ x1 u6 ⟶ x1 x0Known cases_8cases_8 : ∀ x0 . x0 ∈ u8 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 u3 ⟶ x1 u4 ⟶ x1 u5 ⟶ x1 u6 ⟶ x1 u7 ⟶ x1 x0Known 27a71.. : ∀ x0 . x0 ∈ u19 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 u3 ⟶ x1 u4 ⟶ x1 u5 ⟶ x1 u6 ⟶ x1 u7 ⟶ x1 u8 ⟶ x1 u9 ⟶ x1 u10 ⟶ x1 u11 ⟶ x1 u12 ⟶ x1 u13 ⟶ x1 u14 ⟶ x1 u15 ⟶ x1 u16 ⟶ x1 u17 ⟶ x1 u18 ⟶ x1 x0Known 1435b.. : 55574.. u19 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x20Known 91e6c.. : u19 ∈ u22Known 866c8.. : ∀ x0 . x0 ∈ u12 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 u3 ⟶ x1 u4 ⟶ x1 u5 ⟶ x1 u6 ⟶ x1 u7 ⟶ x1 u8 ⟶ x1 u9 ⟶ x1 u10 ⟶ x1 u11 ⟶ x1 x0Known 6de8d.. : ∀ x0 . x0 ∈ u13 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 u3 ⟶ x1 u4 ⟶ x1 u5 ⟶ x1 u6 ⟶ x1 u7 ⟶ x1 u8 ⟶ x1 u9 ⟶ x1 u10 ⟶ x1 u11 ⟶ x1 u12 ⟶ x1 x0Known dca77.. : ∀ x0 . x0 ∈ u14 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 u3 ⟶ x1 u4 ⟶ x1 u5 ⟶ x1 u6 ⟶ x1 u7 ⟶ x1 u8 ⟶ x1 u9 ⟶ x1 u10 ⟶ x1 u11 ⟶ x1 u12 ⟶ x1 u13 ⟶ x1 x0Known f3498.. : ∀ x0 . x0 ∈ u15 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 u3 ⟶ x1 u4 ⟶ x1 u5 ⟶ x1 u6 ⟶ x1 u7 ⟶ x1 u8 ⟶ x1 u9 ⟶ x1 u10 ⟶ x1 u11 ⟶ x1 u12 ⟶ x1 u13 ⟶ x1 u14 ⟶ x1 x0Known 6ab99.. : ∀ x0 . x0 ∈ u20 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 u3 ⟶ x1 u4 ⟶ x1 u5 ⟶ x1 u6 ⟶ x1 u7 ⟶ x1 u8 ⟶ x1 u9 ⟶ x1 u10 ⟶ x1 u11 ⟶ x1 u12 ⟶ x1 u13 ⟶ x1 u14 ⟶ x1 u15 ⟶ x1 u16 ⟶ x1 u17 ⟶ x1 u18 ⟶ x1 u19 ⟶ x1 x0Known 54789.. : 55574.. u20 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x21Known 5e08e.. : u20 ∈ u22Known cases_5cases_5 : ∀ x0 . x0 ∈ u5 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 u3 ⟶ x1 u4 ⟶ x1 x0Known cases_6cases_6 : ∀ x0 . x0 ∈ u6 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 u3 ⟶ x1 u4 ⟶ x1 u5 ⟶ x1 x0Known cases_9cases_9 : ∀ x0 . x0 ∈ u9 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 u3 ⟶ x1 u4 ⟶ x1 u5 ⟶ x1 u6 ⟶ x1 u7 ⟶ x1 u8 ⟶ x1 x0Known a039e.. : ∀ x0 . x0 ∈ u21 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 u2 ⟶ x1 u3 ⟶ x1 u4 ⟶ x1 u5 ⟶ x1 u6 ⟶ x1 u7 ⟶ x1 u8 ⟶ x1 u9 ⟶ x1 u10 ⟶ x1 u11 ⟶ x1 u12 ⟶ x1 u13 ⟶ x1 u14 ⟶ x1 u15 ⟶ x1 u16 ⟶ x1 u17 ⟶ x1 u18 ⟶ x1 u19 ⟶ x1 u20 ⟶ x1 x0Known cases_1cases_1 : ∀ x0 . x0 ∈ u1 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 x0Known 667cd.. : 55574.. u21 = λ x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 . x22Known 01ee3.. : u21 ∈ u22Known cases_2cases_2 : ∀ x0 . x0 ∈ u2 ⟶ ∀ x1 : ι → ο . x1 0 ⟶ x1 u1 ⟶ x1 x0Known binunionEbinunionE : ∀ x0 x1 x2 . x2 ∈ binunion x0 x1 ⟶ or (x2 ∈ x0) (x2 ∈ x1)Known SingESingE : ∀ x0 x1 . x1 ∈ Sing x0 ⟶ x1 = x0Theorem 907a2.. : ∀ x0 . x0 ⊆ u22 ⟶ atleastp u3 x0 ⟶ not (∀ x1 . x1 ∈ x0 ⟶ ∀ x2 . x2 ∈ x0 ⟶ (x1 = x2 ⟶ ∀ x3 : ο . x3) ⟶ 0aea9.. x1 x2) (proof) |
|