∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2 ⟶ x0 x2 x1) ⟶ (∀ x1 . x1 ⊆ u18 ⟶ atleastp u3 x1 ⟶ not (∀ x2 . x2 ∈ x1 ⟶ ∀ x3 . x3 ∈ x1 ⟶ (x2 = x3 ⟶ ∀ x4 : ο . x4) ⟶ x0 x2 x3)) ⟶ (∀ x1 . x1 ⊆ u18 ⟶ atleastp u6 x1 ⟶ not (∀ x2 . x2 ∈ x1 ⟶ ∀ x3 . x3 ∈ x1 ⟶ (x2 = x3 ⟶ ∀ x4 : ο . x4) ⟶ not (x0 x2 x3))) ⟶ ∀ x1 . x1 ∈ u18 ⟶ ∀ x2 . x2 ∈ u18 ⟶ (x1 = x2 ⟶ ∀ x3 : ο . x3) ⟶ not (x0 x1 x2) ⟶ atleastp (binintersect (DirGraphOutNeighbors u18 x0 x1) (DirGraphOutNeighbors u18 x0 x2)) u2 |
|