Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: CSNo x0.
Claim L1: ...
...
Claim L2: ...
...
Claim L3: ...
...
Claim L4: ...
...
Claim L5: ...
...
Claim L6: ...
...
Claim L7: ...
...
Claim L8: ...
...
Claim L9: ...
...
Claim L10: ...
...
Claim L11: ...
...
Claim L12: ...
...
Claim L13: ...
...
Claim L14: ...
...
Claim L15: ...
...
Claim L16: ...
...
Claim L17: ...
...
Claim L18: ...
...
Claim L19: ...
...
Claim L20: ...
...
Claim L21: ...
...
Claim L22: ...
...
Claim L23: ...
...
Claim L24: ...
...
Claim L25: ...
...
Claim L26: ...
...
Claim L27: ...
...
Claim L28: ...
...
Claim L29: ...
...
Claim L30: ...
...
Claim L31: ...
...
Claim L32: ...
...
Claim L33: ...
...
Claim L34: ...
...
Claim L35: ...
...
Claim L36: ...
...
Claim L37: ...
...
Claim L38: ...
...
Claim L39: ...
...
Claim L40: ...
...
Claim L41: ...
...
Claim L42: ...
...
Claim L43: ...
...
Claim L44: ...
...
Claim L45: ...
...
Claim L46: ...
...
Claim L47: ...
...
Claim L48: ...
...
Apply SNoLt_trichotomy_or_impred with CSNo_Im x0, 0, exp_CSNo_nat (If_i (or (SNoLt (CSNo_Im x0) 0) (and (CSNo_Im x0 = 0) (SNoLt (CSNo_Re x0) 0))) (SNo_pair (sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (CSNo_Re x0) (modulus_CSNo x0)))) (minus_SNo (sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (minus_SNo (CSNo_Re x0)) (modulus_CSNo x0)))))) (SNo_pair (sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (CSNo_Re x0) (modulus_CSNo x0)))) (sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (minus_SNo (CSNo_Re x0)) (modulus_CSNo x0)))))) 2 = x0 leaving 5 subgoals.
The subproof is completed by applying L2.
The subproof is completed by applying SNo_0.
Assume H49: SNoLt (CSNo_Im x0) 0.
Claim L50: ...
...
Apply If_i_1 with or (SNoLt (CSNo_Im x0) 0) (and (CSNo_Im x0 = 0) (SNoLt (CSNo_Re x0) 0)), SNo_pair (sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (CSNo_Re x0) (modulus_CSNo x0)))) (minus_SNo (sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (minus_SNo (CSNo_Re x0)) (modulus_CSNo x0))))), SNo_pair (sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (CSNo_Re x0) (modulus_CSNo x0)))) (sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (minus_SNo (CSNo_Re x0)) (modulus_CSNo x0)))), λ x1 x2 . exp_CSNo_nat x2 2 = x0 leaving 2 subgoals.
The subproof is completed by applying L50.
Apply CSNo_ReIm_split with exp_CSNo_nat (SNo_pair (sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (CSNo_Re x0) (modulus_CSNo x0)))) (minus_SNo (sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (minus_SNo (CSNo_Re x0)) (modulus_CSNo x0)))))) 2, x0 leaving 4 subgoals.
The subproof is completed by applying L43.
The subproof is completed by applying H0.
Apply exp_CSNo_nat_2 with SNo_pair (sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (CSNo_Re x0) (modulus_CSNo x0)))) (minus_SNo (sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (minus_SNo (CSNo_Re x0)) (modulus_CSNo x0))))), λ x1 x2 . CSNo_Re x2 = CSNo_Re x0 leaving 2 subgoals.
The subproof is completed by applying L41.
Apply mul_CSNo_CRe with SNo_pair (sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (CSNo_Re x0) (modulus_CSNo x0)))) (minus_SNo (sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (minus_SNo (CSNo_Re x0)) (modulus_CSNo x0))))), SNo_pair (sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (CSNo_Re x0) (modulus_CSNo x0)))) (minus_SNo (sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (minus_SNo (CSNo_Re x0)) (modulus_CSNo x0))))), λ x1 x2 . x2 = CSNo_Re x0 leaving 3 subgoals.
The subproof is completed by applying L41.
The subproof is completed by applying L41.
Apply CSNo_Re2 with sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (CSNo_Re x0) (modulus_CSNo x0))), minus_SNo (sqrt_SNo_nonneg (mul_SNo (eps_ 1) (add_SNo (minus_SNo (CSNo_Re x0)) (modulus_CSNo x0)))), λ x1 x2 . add_SNo (mul_SNo x2 x2) ... = ... leaving 3 subgoals.
...
...
...
...
...
...