Let x0 of type ι be given.
Let x1 of type ι → ι → ο be given.
Assume H0: ∀ x2 x3 . x1 x2 x3 ⟶ x1 x3 x2.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Assume H2: x6 ⊆ x0.
Assume H3: x5 ⊆ x0.
Assume H6:
∀ x8 . x8 ∈ x6 ⟶ not (x1 x3 x8).
Assume H7: ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 : ο . (x8 = x2 ⟶ x9) ⟶ (x8 = x3 ⟶ x9) ⟶ (x8 ∈ x4 ⟶ x9) ⟶ (x8 ∈ x5 ⟶ x9) ⟶ (x8 ∈ x6 ⟶ x9) ⟶ (x8 ∈ x7 ⟶ x9) ⟶ x9.
Assume H8:
∀ x8 . x8 ∈ x6 ⟶ ∀ x9 : ο . (∀ x10 . x10 ∈ x6 ⟶ ∀ x11 . x11 ∈ x6 ⟶ (x10 = x11 ⟶ ∀ x12 : ο . x12) ⟶ x10 ∈ DirGraphOutNeighbors x0 x1 x8 ⟶ x11 ∈ DirGraphOutNeighbors x0 x1 x8 ⟶ not (x1 x10 x11) ⟶ (∀ x12 . x12 ∈ x6 ⟶ nIn x12 (SetAdjoin (UPair x8 x10) x11) ⟶ not (x1 x8 x12)) ⟶ x9) ⟶ x9.
Assume H10:
∀ x8 . x8 ∈ x6 ⟶ nIn x8 x5.
Let x8 of type ι → ι be given.
Let x9 of type ι → ι be given.
Assume H11:
∀ x10 . x10 ∈ x6 ⟶ ∀ x11 . x11 ∈ DirGraphOutNeighbors x0 x1 x2 ⟶ x1 x11 x10 ⟶ x11 = x8 x10.
Assume H12: ∀ x10 . x10 ∈ x6 ⟶ x9 x10 ∈ x5.
Assume H13: ∀ x10 . x10 ∈ x6 ⟶ x1 x10 (x9 x10).
Assume H14:
∀ x10 . x10 ∈ x5 ⟶ ∃ x11 . and (x11 ∈ x6) (x9 x11 = x10).
Let x10 of type ι be given.
Assume H15: x10 ∈ x6.
Apply dneg with
∃ x11 . and (x11 ∈ x7) (x1 x10 x11).
Assume H16:
not (∃ x11 . and (x11 ∈ x7) (x1 x10 x11)).
Apply H8 with
x10,
False leaving 2 subgoals.
The subproof is completed by applying H15.
Let x11 of type ι be given.
Assume H17: x11 ∈ x6.
Let x12 of type ι be given.
Assume H18: x12 ∈ x6.
Assume H19: ....