Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιιο be given.
Assume H0: ∀ x2 x3 . x1 x2 x3x1 x3 x2.
Assume H1: ∀ x2 . x2x0equip (DirGraphOutNeighbors x0 x1 x2) u5.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Assume H2: x6x0.
Assume H3: x5x0.
Assume H4: x6 = {x8 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x2) (Sing x2))|equip (binintersect (DirGraphOutNeighbors x0 x1 x8) (DirGraphOutNeighbors x0 x1 x2)) u1}.
Assume H5: x4 = setminus (DirGraphOutNeighbors x0 x1 x2) (Sing x3).
Assume H6: ∀ x8 . x8x6not (x1 x3 x8).
Assume H7: ∀ x8 . x8x0∀ x9 : ο . (x8 = x2x9)(x8 = x3x9)(x8x4x9)(x8x5x9)(x8x6x9)(x8x7x9)x9.
Assume H8: ∀ x8 . x8x6∀ x9 : ο . (∀ x10 . x10x6∀ x11 . x11x6(x10 = x11∀ x12 : ο . x12)x10DirGraphOutNeighbors x0 x1 x8x11DirGraphOutNeighbors x0 x1 x8not (x1 x10 x11)(∀ x12 . x12x6nIn x12 (SetAdjoin (UPair x8 x10) x11)not (x1 x8 x12))x9)x9.
Assume H9: ∀ x8 . x8x6∀ x9 . x9x6(x8 = x9∀ x10 : ο . x10)∀ x10 . x10binintersect (DirGraphOutNeighbors x0 x1 x8) (DirGraphOutNeighbors x0 x1 x9)x10x6.
Assume H10: ∀ x8 . x8x6nIn x8 x5.
Let x8 of type ιι be given.
Let x9 of type ιι be given.
Assume H11: ∀ x10 . x10x6∀ x11 . x11DirGraphOutNeighbors x0 x1 x2x1 x11 x10x11 = x8 x10.
Assume H12: ∀ x10 . x10x6x9 x10x5.
Assume H13: ∀ x10 . x10x6x1 x10 (x9 x10).
Assume H14: ∀ x10 . x10x5∃ x11 . and (x11x6) (x9 x11 = x10).
Let x10 of type ι be given.
Assume H15: x10x6.
Apply dneg with ∃ x11 . and (x11x7) (x1 x10 x11).
Assume H16: not (∃ x11 . and (x11x7) (x1 x10 x11)).
Apply H8 with x10, False leaving 2 subgoals.
The subproof is completed by applying H15.
Let x11 of type ι be given.
Assume H17: x11x6.
Let x12 of type ι be given.
Assume H18: x12x6.
Assume H19: ....
...