Let x0 of type ι → ι → ο be given.
Assume H0: ∀ x1 x2 . x0 x1 x2 ⟶ x0 x2 x1.
Assume H1:
not (∃ x1 . and (x1 ⊆ u9) (and (equip u4 x1) (∀ x2 . x2 ∈ x1 ⟶ ∀ x3 . x3 ∈ x1 ⟶ (x2 = x3 ⟶ ∀ x4 : ο . x4) ⟶ not (x0 x2 x3)))).
Let x1 of type ι be given.
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Assume H6:
not (x0 x1 x2).
Assume H7:
not (x0 x1 x3).
Assume H8:
not (x0 x1 x4).
Assume H9:
not (x0 x2 x3).
Assume H10:
not (x0 x2 x4).
Assume H11:
not (x0 x3 x4).
Let x5 of type ο be given.
Assume H12: x1 = x2 ⟶ x5.
Assume H13: x1 = x3 ⟶ x5.
Assume H14: x1 = x4 ⟶ x5.
Assume H15: x2 = x3 ⟶ x5.
Assume H16: x2 = x4 ⟶ x5.
Assume H17: x3 = x4 ⟶ x5.
Apply dneg with
x5.
Apply H1.
Let x6 of type ο be given.
Assume H21:
∀ x7 . and (x7 ⊆ u9) (and (equip u4 x7) (∀ x8 . x8 ∈ x7 ⟶ ∀ x9 . x9 ∈ x7 ⟶ (x8 = x9 ⟶ ∀ x10 : ο . x10) ⟶ not (x0 x8 x9))) ⟶ x6.
Apply H21 with
SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4.
Apply andI with
SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4 ⊆ u9,
and (equip u4 (SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4)) (∀ x7 . x7 ∈ SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4 ⟶ ∀ x8 . x8 ∈ SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4 ⟶ (x7 = x8 ⟶ ∀ x9 : ο . x9) ⟶ not (x0 x7 x8)) leaving 2 subgoals.
Let x7 of type ι be given.
Apply L20 with
x7,
λ x8 . x8 ∈ u9 leaving 5 subgoals.
The subproof is completed by applying H22.
The subproof is completed by applying H2.
The subproof is completed by applying H3.
The subproof is completed by applying H4.
The subproof is completed by applying H5.
Apply andI with
equip u4 (SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4),
∀ x7 . x7 ∈ SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4 ⟶ ∀ x8 . x8 ∈ SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4 ⟶ (x7 = x8 ⟶ ∀ x9 : ο . x9) ⟶ not (x0 x7 x8) leaving 2 subgoals.
Apply equip_sym with
SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4,
u4.
Apply unknownprop_30f51c1e2b83590a7ed46a006f5e6311b01e639f1f6e9abb0eccefd285a20a15 with
x1,
x2,
x3,
x4 leaving 6 subgoals.
Assume H22: x1 = x2.
Apply H19.
Apply H12.
The subproof is completed by applying H22.