Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιιο be given.
Assume H0: ∀ x1 x2 . x0 x1 x2x0 x2 x1.
Assume H1: not (or (∃ x1 . and (x1u9) (and (equip u3 x1) (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))) (∃ x1 . and (x1u9) (and (equip u4 x1) (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3))))).
Claim L2: ...
...
Let x1 of type ι be given.
Assume H3: x1u9.
Let x2 of type ι be given.
Assume H4: x2u9.
Let x3 of type ι be given.
Assume H5: x3u9.
Let x4 of type ι be given.
Assume H6: x4u9.
Let x5 of type ι be given.
Assume H7: x5u9.
Assume H8: x1 = x2∀ x6 : ο . x6.
Assume H9: x1 = x3∀ x6 : ο . x6.
Assume H10: x1 = x4∀ x6 : ο . x6.
Assume H11: x1 = x5∀ x6 : ο . x6.
Assume H12: x2 = x3∀ x6 : ο . x6.
Assume H13: x2 = x4∀ x6 : ο . x6.
Assume H14: x2 = x5∀ x6 : ο . x6.
Assume H15: x3 = x4∀ x6 : ο . x6.
Assume H16: x3 = x5∀ x6 : ο . x6.
Assume H17: x4 = x5∀ x6 : ο . x6.
Assume H18: x0 x1 x2.
Assume H19: x0 x1 x3.
Assume H20: x0 x1 x4.
Assume H21: not (x0 x2 x3).
Assume H22: not (x0 x2 x4).
Assume H23: not (x0 x3 x4).
Assume H24: x0 x5 x2.
Assume H25: x0 x5 x3.
Assume H26: x0 x5 x4.
Claim L27: ...
...
Claim L28: ...
...
Claim L29: ...
...
Claim L30: ...
...
Claim L31: ...
...
Claim L32: ...
...
Claim L33: ...
...
Claim L34: ...
...
Claim L35: ...
...
Claim L36: ...
...
Apply unknownprop_45d11dce2d0b092bd17c01d64c29c5885c90b43dc7cb762c6d6ada999ea508c5 with u3, setminus u9 (SetAdjoin (SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4) x5), False leaving 3 subgoals.
The subproof is completed by applying nat_3.
Assume H37: atleastp (setminus u9 (SetAdjoin (SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4) x5)) u3.
Apply unknownprop_8a6bdce060c93f04626730b6e01b099cc0487102a697e253c81b39b9a082262d with u8 leaving 2 subgoals.
The subproof is completed by applying nat_8.
Apply unknownprop_d80a5cdd35aff682e6edc37d56782355ff9ceaa0a69a0eeabe526b6102deafb2 with u9, SetAdjoin (SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4) x5, λ x6 x7 . atleastp x7 u8.
Apply binintersect_com with u9, SetAdjoin (SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4) x5, λ x6 x7 . atleastp (binunion (setminus u9 (SetAdjoin (SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4) x5)) x7) u8.
Apply binintersect_Subq_eq_1 with SetAdjoin (SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4) x5, u9, λ x6 x7 . atleastp (binunion (setminus u9 (SetAdjoin (SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4) x5)) x7) u8 leaving 2 subgoals.
...
...
...