Search for blocks/addresses/...
Proofgold Proof
pf
Let x0 of type
ι
be given.
Assume H0:
CRing_with_id
x0
.
Apply H0 with
explicit_CRing_with_id
(
K_field_0
x0
x0
)
(
K_field_3
x0
x0
)
(
K_field_4
x0
x0
)
(
K_field_1_b
x0
x0
)
(
K_field_2_b
x0
x0
)
.
Assume H1:
struct_b_b_e_e
x0
.
Apply unknownprop_50ae0d1c45204b46a4fcc7a6bee445594122c11b111b42c080baae0465265b26 with
x0
,
λ x1 x2 .
unpack_b_b_e_e_o
x2
(
λ x3 .
λ x4 x5 :
ι →
ι → ι
.
λ x6 x7 .
explicit_CRing_with_id
x3
x6
x7
x4
x5
)
⟶
explicit_CRing_with_id
(
K_field_0
x0
x0
)
(
K_field_3
x0
x0
)
(
K_field_4
x0
x0
)
(
K_field_1_b
x0
x0
)
(
K_field_2_b
x0
x0
)
leaving 2 subgoals.
The subproof is completed by applying H0.
Apply CRing_with_id_unpack_eq with
K_field_0
x0
x0
,
K_field_1_b
x0
x0
,
K_field_2_b
x0
x0
,
K_field_3
x0
x0
,
K_field_4
x0
x0
,
λ x1 x2 : ο .
x2
⟶
explicit_CRing_with_id
(
K_field_0
x0
x0
)
(
K_field_3
x0
x0
)
(
K_field_4
x0
x0
)
(
K_field_1_b
x0
x0
)
(
K_field_2_b
x0
x0
)
.
Assume H2:
explicit_CRing_with_id
(
K_field_0
x0
x0
)
(
K_field_3
x0
x0
)
(
K_field_4
x0
x0
)
(
K_field_1_b
x0
x0
)
(
K_field_2_b
x0
x0
)
.
The subproof is completed by applying H2.
■