Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: CRing_with_id x0.
Apply H0 with explicit_CRing_with_id (K_field_0 x0 x0) (K_field_3 x0 x0) (K_field_4 x0 x0) (K_field_1_b x0 x0) (K_field_2_b x0 x0).
Assume H1: struct_b_b_e_e x0.
Apply unknownprop_50ae0d1c45204b46a4fcc7a6bee445594122c11b111b42c080baae0465265b26 with x0, λ x1 x2 . unpack_b_b_e_e_o x2 (λ x3 . λ x4 x5 : ι → ι → ι . λ x6 x7 . explicit_CRing_with_id x3 x6 x7 x4 x5)explicit_CRing_with_id (K_field_0 x0 x0) (K_field_3 x0 x0) (K_field_4 x0 x0) (K_field_1_b x0 x0) (K_field_2_b x0 x0) leaving 2 subgoals.
The subproof is completed by applying H0.
Apply CRing_with_id_unpack_eq with K_field_0 x0 x0, K_field_1_b x0 x0, K_field_2_b x0 x0, K_field_3 x0 x0, K_field_4 x0 x0, λ x1 x2 : ο . x2explicit_CRing_with_id (K_field_0 x0 x0) (K_field_3 x0 x0) (K_field_4 x0 x0) (K_field_1_b x0 x0) (K_field_2_b x0 x0).
Assume H2: explicit_CRing_with_id (K_field_0 x0 x0) (K_field_3 x0 x0) (K_field_4 x0 x0) (K_field_1_b x0 x0) (K_field_2_b x0 x0).
The subproof is completed by applying H2.