Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ιο be given.
Let x1 of type ιιιο be given.
Let x2 of type ιι be given.
Let x3 of type ιιιιιι be given.
Let x4 of type ιο be given.
Let x5 of type ιιιο be given.
Let x6 of type ιι be given.
Let x7 of type ιιιιιι be given.
Let x8 of type ιι be given.
Let x9 of type ιιιι be given.
Let x10 of type ιι be given.
Let x11 of type ιιιι be given.
Let x12 of type ιι be given.
Let x13 of type ιι be given.
Assume H0: MetaAdjunction_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13.
Apply unknownprop_9a5dd92d37ccfa65696c11e832d98097811bf4001ca7eb00f4f9586fc6e6bb6b with x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, ∀ x14 . ∀ x15 : ι → ι . MetaCat_initial_p x0 x1 x2 x3 x14 x15∃ x16 : ι → ι . MetaCat_initial_p x4 x5 x6 x7 (x8 x14) x16 leaving 2 subgoals.
The subproof is completed by applying H0.
Assume H1: MetaFunctor_strict x0 x1 x2 x3 x4 x5 x6 x7 x8 x9.
Assume H2: MetaFunctor x4 x5 x6 x7 x0 x1 x2 x3 x10 x11.
Assume H3: MetaNatTrans x0 x1 x2 x3 x0 x1 x2 x3 (λ x14 . x14) (λ x14 x15 x16 . x16) (λ x14 . x10 (x8 x14)) (λ x14 x15 x16 . x11 (x8 x14) (x8 x15) (x9 x14 x15 x16)) x12.
Assume H4: MetaNatTrans x4 x5 x6 x7 x4 x5 x6 x7 (λ x14 . x8 (x10 x14)) (λ x14 x15 x16 . x9 (x10 x14) (x10 x15) (x11 x14 x15 x16)) (λ x14 . x14) (λ x14 x15 x16 . x16) x13.
Assume H5: MetaAdjunction x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13.
Apply unknownprop_67ed42aa94f161ee21a2e65a66bf8b96dc66d4484eee9eeb2abcb112d8b49161 with x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, ∀ x14 . ∀ x15 : ι → ι . MetaCat_initial_p x0 x1 x2 x3 x14 x15∃ x16 : ι → ι . MetaCat_initial_p x4 x5 x6 x7 (x8 x14) x16 leaving 2 subgoals.
The subproof is completed by applying H5.
Assume H6: ∀ x14 . x0 x14x7 (x8 x14) (x8 (x10 (x8 x14))) (x8 x14) (x13 (x8 x14)) (x9 x14 (x10 (x8 x14)) (x12 x14)) = x6 (x8 x14).
Assume H7: ∀ x14 . x4 x14x3 (x10 x14) (x10 (x8 (x10 x14))) (x10 x14) (x11 (x8 (x10 x14)) x14 (x13 x14)) (x12 (x10 x14)) = x2 (x10 x14).
Apply unknownprop_b9f4ecece16a3f4b44463b508cc3b9f5d1731684163a4bbdbf54ad9580b00fef with x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, ∀ x14 . ∀ x15 : ι → ι . MetaCat_initial_p x0 x1 x2 x3 x14 x15∃ x16 : ι → ι . MetaCat_initial_p x4 x5 x6 x7 (x8 x14) x16 leaving 2 subgoals.
The subproof is completed by applying H1.
Assume H8: MetaCat x0 x1 x2 x3.
...