Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: TransSet x0.
Assume H1: ZF_closed x0.
Let x1 of type ι be given.
Assume H2: x1x0.
Assume H3: nIn x1 x0.
Apply ZF_closed_E with x0, ∃ x2 : ι → ι . bij {x3 ∈ x0|ordinal x3} x1 x2 leaving 2 subgoals.
The subproof is completed by applying H1.
Assume H4: Union_closed x0.
Assume H5: Power_closed x0.
Assume H6: Repl_closed x0.
Claim L7: ...
...
Claim L8: ...
...
Claim L9: ...
...
Let x2 of type ο be given.
Assume H10: ∀ x3 : ι → ι . bij {x4 ∈ x0|ordinal x4} x1 x3x2.
Apply H10 with In_rec_i (λ x3 . λ x4 : ι → ι . prim0 (λ x5 . (λ x6 . λ x7 : ι → ι . λ x8 . and ((λ x9 x10 . λ x11 : ι → ι . and (x10x1) (∀ x12 . x12x9x11 x12 = x10∀ x13 : ο . x13)) x6 x8 x7) (∀ x9 . (λ x10 x11 . λ x12 : ι → ι . and (x11x1) (∀ x13 . x13x10x12 x13 = x11∀ x14 : ο . x14)) x6 x9 x7V_ x8V_ x9)) x3 x4 x5)).
Apply and3I with ∀ x3 . x3{x4 ∈ x0|ordinal x4}In_rec_i (λ x4 . λ x5 : ι → ι . prim0 (λ x6 . (λ x7 . λ x8 : ι → ι . λ x9 . and ((λ x10 x11 . λ x12 : ι → ι . and (x11x1) (∀ x13 . x13x10x12 x13 = x11∀ x14 : ο . x14)) x7 x9 x8) (∀ x10 . (λ x11 x12 . λ x13 : ι → ι . and (x12x1) (∀ x14 . x14x11x13 x14 = x12∀ x15 : ο . x15)) x7 x10 x8V_ x9V_ x10)) x4 x5 x6)) x3x1, ∀ x3 . ...∀ x4 . ...In_rec_i (λ x5 . λ x6 : ι → ι . prim0 (λ x7 . (λ x8 . λ x9 : ι → ι . λ x10 . and ((λ x11 x12 . λ x13 : ι → ι . and (x12x1) (∀ x14 . x14x11x13 x14 = x12∀ x15 : ο . x15)) x8 x10 x9) (∀ x11 . (λ x12 x13 . λ x14 : ι → ι . and (x13x1) (∀ x15 . x15x12x14 x15 = x13∀ x16 : ο . x16)) x8 x11 x9V_ x10V_ x11)) x5 x6 x7)) x3 = In_rec_i (λ x5 . λ x6 : ι → ι . prim0 (λ x7 . (λ x8 . λ x9 : ι → ι . λ x10 . and ((λ x11 x12 . λ x13 : ι → ι . and (x12x1) (∀ x14 . x14x11x13 x14 = x12∀ x15 : ο . x15)) x8 x10 x9) (∀ x11 . (λ x12 x13 . λ x14 : ι → ι . and (x13x1) (∀ x15 . x15x12x14 x15 = x13∀ x16 : ο . x16)) ... ... ...V_ x10V_ x11)) ... ... ...)) ...x3 = x4, ... leaving 3 subgoals.
...
...
...