Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι(ιι) → ο be given.
Assume H0: ∀ x1 . ∀ x2 : ι → ι . (∀ x3 . x3x1x2 x3x1)∀ x3 : ι → ι . (∀ x4 . x4x1x2 x4 = x3 x4)x0 x1 x3 = x0 x1 x2.
Assume H1: x0 1 (λ x1 . 0).
Assume H2: x0 omega (λ x1 . x1).
Apply and5I with MetaCat_terminal_p (λ x1 . and (struct_u x1) (unpack_u_o x1 x0)) UnaryFuncHom struct_id struct_comp (pack_u 1 (λ x1 . 0)) (λ x1 . lam (ap x1 0) (λ x2 . 0)), (λ x1 . and (struct_u x1) (unpack_u_o x1 x0)) (pack_u omega (λ x1 . x1)), UnaryFuncHom (pack_u 1 (λ x1 . 0)) (pack_u omega (λ x1 . x1)) (lam 1 (λ x1 . 0)), UnaryFuncHom (pack_u omega (λ x1 . x1)) (pack_u omega (λ x1 . x1)) (lam omega (λ x1 . ordsucc x1)), ∀ x1 x2 x3 . .........and (and (and (UnaryFuncHom (pack_u omega (λ x4 . x4)) x1 ((λ x4 x5 x6 . lam omega (λ x7 . nat_primrec (ap x5 0) (λ x8 x9 . ap x6 x9) x7)) x1 x2 x3)) (struct_comp (pack_u 1 (λ x4 . 0)) (pack_u omega (λ x4 . x4)) x1 ((λ x4 x5 x6 . lam omega (λ x7 . nat_primrec (ap x5 0) (λ x8 x9 . ap x6 x9) x7)) x1 x2 x3) (lam 1 (λ x4 . 0)) = x2)) (struct_comp (pack_u omega (λ x4 . x4)) (pack_u omega (λ x4 . x4)) x1 ((λ x4 x5 x6 . lam omega (λ x7 . nat_primrec (ap x5 0) (λ x8 x9 . ap x6 x9) x7)) x1 x2 x3) (lam omega (λ x4 . ordsucc x4)) = struct_comp (pack_u omega (λ x4 . x4)) x1 x1 x3 ((λ x4 x5 x6 . lam omega (λ x7 . nat_primrec (ap x5 0) (λ x8 x9 . ap x6 x9) x7)) x1 x2 x3))) (∀ x4 . ...struct_comp ... ... ... ... ... = ...struct_comp (pack_u omega (λ x5 . x5)) (pack_u omega (λ x5 . x5)) x1 x4 (lam omega (λ x5 . ordsucc x5)) = struct_comp (pack_u omega (λ x5 . x5)) x1 x1 x3 x4x4 = (λ x5 x6 x7 . lam omega (λ x8 . nat_primrec (ap x6 0) (λ x9 x10 . ap x7 x10) x8)) x1 x2 x3) leaving 5 subgoals.
...
...
...
...
...