Let x0 of type ι be given.
Let x1 of type ι → ι → ο be given.
Assume H0: ∀ x2 x3 . x1 x2 x3 ⟶ x1 x3 x2.
Assume H1:
∀ x2 . x2 ⊆ x0 ⟶ atleastp u3 x2 ⟶ not (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ x1 x3 x4).
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Let x5 of type ι be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Assume H3: x5 ⊆ x0.
Assume H4: x6 ⊆ x0.
Assume H5: x7 ⊆ x0.
Assume H7:
∀ x8 . x8 ∈ x6 ⟶ nIn x8 x5.
Assume H8:
∀ x8 . x8 ∈ x6 ⟶ nIn x8 x7.
Assume H9:
∀ x8 . x8 ∈ x5 ⟶ nIn x8 x7.
Let x8 of type ι be given.
Let x9 of type ι be given.
Assume H11: x8 ∈ x6.
Assume H12: x9 ∈ x7.
Assume H14: x1 x8 x9.
Let x10 of type ι → ι be given.
Assume H15: ∀ x11 . x11 ∈ x6 ⟶ x10 x11 ∈ x5.
Assume H16: ∀ x11 . x11 ∈ x6 ⟶ x1 x11 (x10 x11).
Assume H17:
∀ x11 . x11 ∈ x5 ⟶ ∃ x12 . and (x12 ∈ x6) (x10 x12 = x11).