Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιιο be given.
Assume H0: ∀ x2 x3 . x1 x2 x3x1 x3 x2.
Assume H1: ∀ x2 . x2x0atleastp u3 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x1 x3 x4).
Let x2 of type ι be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Assume H2: nat_p x4.
Let x5 of type ι be given.
Let x6 of type ι be given.
Let x7 of type ι be given.
Assume H3: x5x0.
Assume H4: x6x0.
Assume H5: x7x0.
Assume H6: x5 = setminus (DirGraphOutNeighbors x0 x1 x3) (Sing x2).
Assume H7: ∀ x8 . x8x6nIn x8 x5.
Assume H8: ∀ x8 . x8x6nIn x8 x7.
Assume H9: ∀ x8 . x8x5nIn x8 x7.
Assume H10: ∀ x8 . x8x7x8{x9 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x3) (Sing x3))|equip (binintersect (DirGraphOutNeighbors x0 x1 x9) (DirGraphOutNeighbors x0 x1 x3)) x4}.
Let x8 of type ι be given.
Let x9 of type ι be given.
Assume H11: x8x6.
Assume H12: x9x7.
Assume H13: x9setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x2) (Sing x2)).
Assume H14: x1 x8 x9.
Let x10 of type ιι be given.
Assume H15: ∀ x11 . x11x6x10 x11x5.
Assume H16: ∀ x11 . x11x6x1 x11 (x10 x11).
Assume H17: ∀ x11 . x11x5∃ x12 . and (x12x6) (x10 x12 = x11).
Claim L18: ...
...
Claim L19: ...
...
Claim L20: ...
...
Claim L21: ...
...
Apply atleastp_tra with x4, binintersect (DirGraphOutNeighbors x0 x1 x3) (DirGraphOutNeighbors x0 x1 x9), {x11 ∈ setminus x6 (Sing x8)|x1 (x10 x11) x9} leaving 2 subgoals.
The subproof is completed by applying L19.
Let x11 of type ο be given.
Assume H22: ∀ x12 : ι → ι . inj (binintersect (DirGraphOutNeighbors x0 x1 x3) (DirGraphOutNeighbors x0 x1 x9)) {x13 ∈ setminus x6 (Sing x8)|x1 (x10 x13) x9} x12x11.
Apply H22 with inv x6 x10.
Apply andI with ∀ x12 . x12binintersect (DirGraphOutNeighbors x0 x1 x3) (DirGraphOutNeighbors x0 x1 x9)inv x6 x10 x12{x13 ∈ setminus x6 (Sing x8)|x1 (x10 x13) x9}, ∀ x12 . x12binintersect (DirGraphOutNeighbors x0 x1 x3) (DirGraphOutNeighbors x0 ... ...)∀ x13 . x13binintersect (DirGraphOutNeighbors x0 x1 x3) (DirGraphOutNeighbors x0 x1 x9)inv x6 x10 x12 = inv x6 x10 x13x12 = x13 leaving 2 subgoals.
...
...