Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Let x1 of type ιι be given.
Let x2 of type ιιο be given.
Let x3 of type ι be given.
Let x4 of type ι be given.
Assume H0: prim1 (0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x5 . If_i (x5 = 4a7ef..) x3 x4)) (38062.. x0 x1 x2).
Claim L1: ...
...
Apply L1 with and (and (prim1 x3 x0) (prim1 x4 (x1 x3))) (x2 x3 x4).
Let x5 of type ι be given.
Assume H2: (λ x6 . and (prim1 x6 x0) (∃ x7 . and (prim1 x7 (x1 x6)) (and (0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x8 . If_i (x8 = 4a7ef..) x3 x4) = 0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x8 . If_i (x8 = 4a7ef..) x6 x7)) (x2 x6 x7)))) x5.
Apply H2 with and (and (prim1 x3 x0) (prim1 x4 (x1 x3))) (x2 x3 x4).
Assume H3: prim1 x5 x0.
Assume H4: ∃ x6 . and (prim1 x6 (x1 x5)) (and (0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x7 . If_i (x7 = 4a7ef..) x3 x4) = 0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x7 . If_i (x7 = 4a7ef..) x5 x6)) (x2 x5 x6)).
Apply H4 with and (and (prim1 x3 x0) (prim1 x4 (x1 x3))) (x2 x3 x4).
Let x6 of type ι be given.
Assume H5: (λ x7 . and (prim1 x7 (x1 x5)) (and (0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x8 . If_i (x8 = 4a7ef..) x3 x4) = 0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x8 . If_i (x8 = 4a7ef..) x5 x7)) (x2 x5 x7))) x6.
Apply H5 with and (and (prim1 x3 x0) (prim1 x4 (x1 x3))) (x2 x3 x4).
Assume H6: prim1 x6 (x1 x5).
Assume H7: and (0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x7 . If_i (x7 = 4a7ef..) x3 x4) = 0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x7 . If_i (x7 = 4a7ef..) x5 x6)) (x2 x5 x6).
Apply H7 with and (and (prim1 x3 x0) (prim1 x4 (x1 x3))) (x2 x3 x4).
Assume H8: 0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x7 . If_i (x7 = 4a7ef..) x3 x4) = 0fc90.. (4ae4a.. (4ae4a.. 4a7ef..)) (λ x7 . If_i (x7 = 4a7ef..) x5 x6).
Assume H9: x2 x5 x6.
Apply unknownprop_1d98a2dc54199f22cd9592e66e7c1294600579525b000a5cf24e785ed12e9f6a with x3, x4, x5, x6, and (and (prim1 x3 x0) (prim1 ... ...)) ... leaving 2 subgoals.
...
...