Search for blocks/addresses/...

Proofgold Proof

pf
Let x0 of type ι be given.
Assume H0: SNo x0.
Assume H1: SNoLev x0PSNo (ordsucc (SNoLev x0)) (λ x1 . and (x1x0) (x1 = SNoLev x0∀ x2 : ο . x2)).
Apply binunionE with {x1 ∈ ordsucc (SNoLev x0)|(λ x2 . and (x2x0) (x2 = SNoLev x0∀ x3 : ο . x3)) x1}, {(λ x2 . SetAdjoin x2 (Sing 1)) x1|x1 ∈ ordsucc (SNoLev x0),not ((λ x2 . and (x2x0) (x2 = SNoLev x0∀ x3 : ο . x3)) x1)}, SNoLev x0, False leaving 3 subgoals.
The subproof is completed by applying H1.
Assume H2: SNoLev x0{x1 ∈ ordsucc (SNoLev x0)|(λ x2 . and (x2x0) (x2 = SNoLev x0∀ x3 : ο . x3)) x1}.
Apply SepE2 with ordsucc (SNoLev x0), λ x1 . and (x1x0) (x1 = SNoLev x0∀ x2 : ο . x2), SNoLev x0, False leaving 2 subgoals.
The subproof is completed by applying H2.
Assume H3: SNoLev x0x0.
Assume H4: SNoLev x0 = SNoLev x0∀ x1 : ο . x1.
Apply H4.
Let x1 of type ιιο be given.
Assume H5: x1 (SNoLev x0) (SNoLev x0).
The subproof is completed by applying H5.
Assume H2: SNoLev x0{(λ x2 . SetAdjoin x2 (Sing 1)) x1|x1 ∈ ordsucc (SNoLev x0),not ((λ x2 . and (x2x0) (x2 = SNoLev x0∀ x3 : ο . x3)) x1)}.
Apply ReplSepE_impred with ordsucc (SNoLev x0), λ x1 . not ((λ x2 . and (x2x0) (x2 = SNoLev x0∀ x3 : ο . x3)) x1), λ x1 . (λ x2 . SetAdjoin x2 (Sing 1)) x1, SNoLev x0, False leaving 2 subgoals.
The subproof is completed by applying H2.
Let x1 of type ι be given.
Assume H3: x1ordsucc (SNoLev x0).
Assume H4: not ((λ x2 . and (x2x0) (x2 = SNoLev x0∀ x3 : ο . x3)) x1).
Assume H5: SNoLev x0 = (λ x2 . SetAdjoin x2 (Sing 1)) x1.
Apply tagged_not_ordinal with x1.
Apply H5 with λ x2 x3 . ordinal x2.
Apply SNoLev_ordinal with x0.
The subproof is completed by applying H0.