Let x0 of type ο be given.
Apply H0 with
20e9b...
Let x1 of type ο be given.
Apply H1 with
λ x2 x3 . lam (ap x2 0) (λ x4 . Inj0 x4).
Let x2 of type ο be given.
Apply H2 with
λ x3 x4 . lam (ap x4 0) (λ x5 . Inj1 x5).
Let x3 of type ο be given.
Apply H3 with
λ x4 x5 x6 x7 x8 . lam (setsum (ap x4 0) (ap x5 0)) (λ x9 . combine_funcs (ap x4 0) (ap x5 0) (λ x10 . ap x7 x10) (λ x10 . ap x8 x10) x9).
Apply unknownprop_eb8fa85f1ab6d587c913965e3b03d2a9bd8d29f88f55fc57c7ee9d90282aeead with
PtdPred leaving 2 subgoals.
Let x4 of type ι be given.
Apply H4 with
struct_p x4.
Assume H6:
unpack_p_o x4 (λ x5 . λ x6 : ι → ο . ∃ x7 . and (x7 ∈ x5) (x6 x7)).
The subproof is completed by applying H5.
Let x4 of type ι be given.
Let x5 of type ι be given.
Apply unknownprop_c86200a2eefb0ff844f50b29d5cbeaa2ee14856a2db63542bcbf63218f0d0f1e with
x4,
λ x6 . PtdPred (20e9b.. x6 x5) leaving 2 subgoals.
The subproof is completed by applying H4.
Let x6 of type ι be given.
Let x7 of type ι → ο be given.
Let x8 of type ι be given.
Assume H6: x8 ∈ x6.
Assume H7: x7 x8.
Apply unknownprop_c86200a2eefb0ff844f50b29d5cbeaa2ee14856a2db63542bcbf63218f0d0f1e with
x5,
λ x9 . PtdPred (20e9b.. (pack_p x6 x7) x9) leaving 2 subgoals.
The subproof is completed by applying H5.
Let x9 of type ι be given.
Let x10 of type ι → ο be given.
Let x11 of type ι be given.
Assume H8: x11 ∈ x9.
Assume H9: x10 x11.
Apply unknownprop_b136686cda57813ec105d14134466864c52e8c5ca85ea4790197540126814cf6 with
x6,
x7,
x9,
x10,
λ x12 x13 . PtdPred x13.
Apply unknownprop_2576d2815b46016e5e13a9989b4e9789629d83c56ed1c92a4cda0de077a20752 with
setsum x6 x9,
λ x12 . or (and (x12 = Inj0 (Unj x12)) (x7 (Unj x12))) (and (x12 = Inj1 (Unj x12)) (x10 (Unj x12))).
Let x12 of type ο be given.